217,237 research outputs found

    Forward Neutral Pion Production in p + p and d + Au Collisions at √s_(NN) = 200 GeV

    Get PDF
    Measurements of the production of forward π^0 mesons from p + p and d + Au collisions at √s_(NN) = 200  GeV are reported. The p + p yield generally agrees with next-to-leading order perturbative QCD calculations. The d + Au yield per binary collision is suppressed as η increases, decreasing to ~30% of the p + p yield at =4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward π^0 with charged hadrons at η ≈ 0 show a recoil peak in p + p that is suppressed in d + Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei

    Directed flow in Au + Au collisions at √s_(NN) = 62.4 GeV

    Get PDF
    We present the directed flow (v1) measured in Au+Au collisions at √s_(NN) = 62.4 GeV in the midpseudorapidity region |η| < 1.3 and in the forward pseudorapidity region 2.5 < |η| < 4.0. The results are obtained using the three-particle cumulant method, the event plane method with mixed harmonics, and for the first time at the Relativistic Heavy Ion Collider, the standard method with the event plane reconstructed from spectator neutrons. Results from all three methods are in good agreement. Over the pseudorapidity range studied, charged particle directed flow is in the direction opposite to that of fragmentation neutrons

    Comment on "Quantum Confinement and Optical Gaps in Si Nanocrystals"

    Full text link
    We show that the method used by Ogut, Chelikowsky and Louie (Phys. Rev. Lett. 79, 1770 (1997)) to calculate the optical gap of Si nanocrystals omits an electron-hole polarization energy. When this contribution is taken into account, the corrected optical gap is in excellent agreement with semi-empirical pseudopotential calculations.Comment: 3 pages, 1 figur

    Dynamics of thin-film spin-flip transistors with perpendicular source-drain magnetizations

    Full text link
    A "spin-flip transistor" is a lateral spin valve consisting of ferromagnetic source drain contacts to a thin-film normal-metal island with an electrically floating ferromagnetic base contact on top. We analyze the \emph{dc}-current-driven magnetization dynamics of spin-flip transistors in which the source-drain contacts are magnetized perpendicularly to the device plane by magnetoelectronic circuit theory and the macrospin Landau-Lifshitz-Gilbert equation. Spin flip scattering and spin pumping effects are taken into account. We find a steady-state rotation of the base magnetization at GHz frequencies that is tuneable by the source-drain bias. We discuss the advantages of the lateral structure for high-frequency generation and actuation of nanomechanical systems over recently proposed nanopillar structures.Comment: Accepted by Phys.Rev.B as regular articl
    • …
    corecore