11,797 research outputs found
Transverse Bragg-reflector injection lasers
A GaAs-GaAlAs injection laser has been tested that confines light in the lateral dimension (normal to junction plane) by a multilayer Bragg reflector. In the past, light has been confined as a result of the higher-index guiding region and resulting evanescent fields
Evolution of superconductivity by oxygen annealing in FeTe0.8S0.2
Oxygen annealing dramatically improved the superconducting properties of
solid-state-reacted FeTe0.8S0.2, which showed only a broad onset of
superconducting transition just after the synthesis. The zero resistivity
appeared and reached 8.5 K by the oxygen annealing at 200\degree C. The
superconducting volume fraction was also enhanced from 0 to almost 100%. The
lattice constants were compressed by the oxygen annealing, indicating that the
evolution of bulk superconductivity in FeTe0.8S0.2 was correlated to the
shrinkage of lattice.Comment: 13 pages, 6 figure
Do investors understand really dirty surplus?
This study addresses whether firms’ share prices correctly reflect two accounting measures: dirty surplus and really dirty surplus. Dirty surplus is readily observable from the financial statements, but really dirty surplus, which arises from recognizing equity transactions such as employee stock option exercises at other than fair market value, is not. Findings show that dirty surplus and really dirty surplus are irrelevant for forecasting abnormal comprehensive income. However, findings also indicate that investors appear to undervalue really dirty surplus. Hedge returns are insignificant when portfolios are formed based on dirty surplus, but are significantly positive based on really dirty surplus. Really dirty surplus positive hedge returns are robust to a variety of sensitivity tests. Taken together, the findings are consistent with either investors over-valuing firms that have large negative really dirty surplus or really dirty surplus being correlated with an unmodeled risk factor
Dimensionality of superconductivity in the infinite-layer high-temperature cuprate Sr0.9M0.1CuO2 (M = La, Gd)
The high magnetic field phase diagram of the electron-doped infinite layer
high-temperature superconducting (high-T_c) compound Sr_{0.9}La_{0.1}CuO_2 was
probed by means of penetration depth and magnetization measurements in pulsed
fields to 60 T. An anisotropy ratio of 8 was detected for the upper critical
fields with H parallel (H_{c2}^{ab}) and perpendicular (H_{c2}^c) to the CuO_2
planes, with H_{c2}^{ab} extrapolating to near the Pauli paramagnetic limit of
160 T. The longer superconducting coherence length than the lattice constant
along the c-axis indicates that the orbital degrees of freedom of the pairing
wavefunction are three dimensional. By contrast, low-field magnetization and
specific heat measurements of Sr_{0.9}Gd_{0.1}CuO_2 indicate a coexistence of
bulk s-wave superconductivity with large moment Gd paramagnetism close to the
CuO_2 planes, suggesting a strong confinement of the spin degrees of freedom of
the Cooper pair to the CuO_2 planes. The region between H_{c2}^{ab} and the
irreversibility line in the magnetization, H_{irr}^{ab}, is anomalously large
for an electron-doped high-T_c cuprate, suggesting the existence of additional
quantum fluctuations perhaps due to a competing spin-density wave order.Comment: 4 pages, 4 figures, submitted to Phys. Rev. B, Rapid Communications
(2004). Corresponding author: Nai-Chang Yeh (E-mail: [email protected]
Protein sequence entropy is closely related to packing density and hydrophobicity
We investigated the correlation between the Shannon information entropy, ‘sequence entropy’, with respect to the local flexibility of native globular proteins as described by inverse packing density. These are determined at each residue position for a total set of 130 query proteins, where sequence entropies are calculated from each set of aligned residues. For the accompanying aggregate set of 130 alignments, a strong linear correlation is observed between the calculated sequence entropy and the corresponding inverse packing density determined at an associated residue position. This region of linearity spans the range of Cα packing densities from 12 to 25 amino acids within a sphere of 9 Å radius. Three different hydrophobicity scales all mimic the behavior of the sequence entropies. This confirms the idea that the ability to accommodate mutations is strongly dependent on the available space and on the propensity for each amino acid type to be buried. Future applications of these types of methods may prove useful in identifying both core and flexible residues within a protein
Scattering of slow-light gap solitons with charges in a two-level medium
The Maxwell-Bloch system describes a quantum two-level medium interacting
with a classical electromagnetic field by mediation of the the population
density. This population density variation is a purely quantum effect which is
actually at the very origin of nonlinearity. The resulting nonlinear coupling
possesses particularly interesting consequences at the resonance (when the
frequency of the excitation is close to the transition frequency of the
two-level medium) as e.g. slow-light gap solitons that result from the
nonlinear instability of the evanescent wave at the boundary. As nonlinearity
couples the different polarizations of the electromagnetic field, the
slow-light gap soliton is shown to experience effective scattering whith
charges in the medium, allowing it for instance to be trapped or reflected.
This scattering process is understood qualitatively as being governed by a
nonlinear Schroedinger model in an external potential related to the charges
(the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo
Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect
Magnetic-field-induced phase transitions in the integer quantum Hall effect
are studied under the formation of paired Landau bands arising from Zeeman spin
splitting. By investigating features of modular symmetry, we showed that
modifications to the particle-hole transformation should be considered under
the coupling between the paired Landau bands. Our study indicates that such a
transformation should be modified either when the Zeeman gap is much smaller
than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure
A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize
Citation: Mei, W. B., Liu, S. Z., Schnable, J. C., Yeh, C. T., Springer, N. M., Schnable, P. S., & Barbazuk, W. B. (2017). A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize. Frontiers in Plant Science, 8, 19.
https://doi.org/10.3389/fpls.2017.00694Identifying and characterizing alternative splicing (AS) enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping) do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 X Mo17 recombinant inbred lines (RILs) identified splicing QTL (sQTL). The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize
Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment
This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass concentration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only non-suspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microalgae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1 mg L−1 to be met whilst generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests that future research should focus on non-suspended systems and the determination of the added value potential. In so doing, it is predicted that microalgae systems will be significant in the delivery of the circular economy
- …