339 research outputs found

    Leukocyte depletion results in improved lung function and reduced inflammatory response after cardiac surgery

    Get PDF
    AbstractLeukocyte depletion during cardiopulmonary bypass has been demonstrated in animal experiments to improve pulmonary function. Conflicting results have been reported, however, with clinical depletion by arterial line filter of leukocytes at the beginning of cardiopulmonary bypass. In this study, we examined whether leukocyte depletion from the residual heart-lung machine blood at the end of cardiopulmonary bypass would improve lung function and reduce the postoperative inflammatory response. Thirty patients undergoing elective heart operations were randomly allocated to a leukocyte-depletion group or a control group. In the leukocyte-depletion group ( n = 20), all residual blood (1.2 to 2.1 L) was filtered by leukocyte-removal filters and reinfused after cardiopulmonary bypass, whereas in the control group an identical amount of residual blood after cardiopulmonary bypass was reinfused without filtration ( n = 10). Leukocyte depletion removed more than 97% of leukocytes from the retransfused blood ( p < 0.01) and significantly reduced circulating leukocytes ( p < 0.05) and granulocytes ( p < 0.05) compared with the control group. Levels of the inflammatory mediator thromboxane B 2 determined at the end of operation ( p < 0.05) were significantly lower in the depletion group than in the control group, whereas no statistical differences in interleukin-6 levels were found between the two groups. After operation, pulmonary gas exchange function (arterial oxygen tension at a fraction of inspired oxygen of 0.4) was significantly higher in the leukocyte-depletion group 1 hour after arrival to the intensive care unit ( p < 0.05) and after extubation ( p < 0.05). There were no statistical differences between the two groups with respect to postoperative circulating platelet levels and blood loss, and no infections were observed during the whole period of hospitalization. These results suggest that leukocyte depletion of the residual heart-lung machine blood improves postoperative lung gas exchange function and is safe for patients who are expected to have a severe inflammatory response after heart operations. (J Thorac Cardiovasc Surg 1996;112:494-500

    SYNTHESIS AND CYTOTOXICITY OF NOVEL LIGNANS

    Get PDF
    In this study the syntheses of 11 novel lignans are described. Their cytotoxicities are studied in GLC4, a human small cell lung carcinoma cell line, using the microculture tetrazolium (MTT) assay. Ten of these compounds were substituted with a menthyloxy group on the 5-position of the lactone. These compounds can easily be prepared in (novel) ‘one-pot’, three- or four-step syntheses. In addition, methods for controlling the stereogenic centers are described. Furthermore, five naturally occurring podophyllotoxin-related compounds were tested. The cytotoxicities of all lignan compounds, and of three non-lignan intermediates originating from the syntheses, were compared with the clinically applied anticancer agents etoposide, teniposide, and cisplatin. Most compounds showed moderate to high activities against GLC4, and two of the compounds containing a menthyloxy group showed activities comparable to the reference cytotoxic agents.

    Neonatal anemia relates to intestinal injury in preterm infants

    Get PDF
    BACKGROUND: Anemia is associated with decreased tissue oxygenation in preterm infants and may contribute to developing necrotizing enterocolitis (NEC). We aimed to investigate whether hemoglobin level is associated with intestinal injury, by comparing anemic infants 10 days prior to red blood cell (RBC) transfusion with non-anemic controls. METHODS: A nested case-control study in which we matched anemic preterms (gestational age (GA) < 32 weeks) with non-anemic controls (1:1), based on GA, birth weight (BW), and postnatal age. We measured urinary intestinal fatty acid-binding protein, I-FABP, marker for intestinal injury, twice weekly. Simultaneously, we assessed splanchnic oxygen saturation (rsSO2) and rsSO2 variability. RESULTS: Thirty-six cases and 36 controls were included (median GA 27.6 weeks, BW 1020 grams). Median I-FABP level was higher in cases from 6 days to 24-h before transfusion (median ranging: 4749-8064 pg/ml versus 2194-3751 pg/ml). RsSO2 and rsSO2 variability were lower in cases than controls shortly before transfusion. Hemoglobin levels correlated negatively with rsSO2 and rsSO2 variability in cases, and negatively with I-FABP in cases and controls together. CONCLUSIONS: Urinary I-FABP levels were higher in anemic infants before RBC transfusion than in non-anemic matched controls, suggesting intestinal injury associated with anemia. This may predispose to NEC in some anemic preterm infants. IMPACT: Anemia is a common comorbidity in preterm infants and may lead to impaired splanchnic oxygen saturation and intestinal tissue hypoxia, a proposed mechanism for NEC. Lower hemoglobin level is associated with higher urinary I-FABP levels, a marker for intestinal injury, both in anemic preterm infants and in cases and controls together. Lower splanchnic oxygen saturation and reduction of its variability are associated with higher urinary I-FABP levels in anemic preterm infants before their first RBC transfusion. These results support the hypothesis that anemia in very preterm infants results in intestinal cell injury, which may precede NEC development in some
    • …
    corecore