67 research outputs found

    Morphoregulatory Functions of the RNA-Binding Motif Protein 3 in Cell Spreading, Polarity and Migration

    Get PDF
    RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development

    Mitochondrial dysfunction in an Opa1Q285STOP mouse model of dominant optic atrophy results from Opa1 haploinsufficiency

    Get PDF
    Mutations in the opa1 (optic atrophy 1) gene lead to autosomal dominant optic atrophy (ADOA), a hereditary eye disease. This gene encodes the Opa1 protein, a mitochondrial dynamin-related GTPase required for mitochondrial fusion and the maintenance of normal crista structure. The majority of opa1 mutations encode truncated forms of the protein, lacking a complete GTPase domain. It is unclear whether the phenotype results from haploinsufficiency or rather a deleterious effect of truncated Opa1 protein. We studied a heterozygous Opa1 mutant mouse carrying a defective allele with a stop codon in the beginning of the GTPase domain at residue 285, a mutation that mimics human pathological mutations. Using an antibody raised against an N-terminal portion of Opa1, we found that the level of wild-type protein was decreased in the mutant mice, as predicted. However, no truncated Opa1 protein was expressed. In embryonic fibroblasts isolated from the mutant mice, this partial loss of Opa1 caused mitochondrial respiratory deficiency and a selective loss of respiratory Complex IV subunits. Furthermore, partial Opa1 deficiency resulted in a substantial resistance to endoplasmic reticulum stress-induced death. On the other hand, the enforced expression of truncated Opa1 protein in cells containing normal levels of wild-type protein did not cause mitochondrial defects. Moreover, cells expressing the truncated Opa1 protein showed reduced Bax activation in response to apoptotic stimuli. Taken together, our results exclude deleterious dominant-negative or gain-of-function mechanisms for this type of Opa1 mutation and affirm haploinsufficiency as the mechanism underlying mitochondrial dysfunction in ADOA

    Rac and Rho GTPases in cancer cell motility control

    Get PDF
    Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination

    Guanine exchange-dependent and -independent effects of Vav1 on integrin-induced T cell spreading

    No full text
    Vav1 is a 95-kDa member of the Dbl family of guanine exchange factors and a prominent hemopoietic cell-specific protein tyrosine kinase substrate, the involvement of which in cytoskeletal rearrangements has been linked to its ability to activate Rho family small GTPases. beta(1) integrin ligation by fibronectin induced Vav1 phosphorylation in peripheral blood lymphocytes and in two different T cell lines. Vav1 overexpression led to massive T cell spreading on beta(1) integrin ligands, and, conversely, two dominant negative mutants blocked integrin-induced spreading. Vav1 and beta(1) integrin ligation synergistically activated Pak, but not Rac, Cdc42, or c-Jun N-terminal kinase. In addition, Vav1 cooperated with constitutively active V12Rac mutant, but not with V12Cdc42, to induce T cell spreading after integrin occupancy. More importantly, a Vav1 mutant that lacked guanine exchange factor activity still cooperated with V12Rac. In contrast, a point mutation in the SH2 domain of Vav1 abolished this synergistic effect. Therefore, our results suggest a new regulatory effect of Vav1 in T cell spreading, which is independent of its guanine exchange factor activity

    Guanine exchange-dependent and -independent effects of Vav1 on integrin-induced T cell spreading

    No full text
    Vav1 is a 95-kDa member of the Dbl family of guanine exchange factors and a prominent hemopoietic cell-specific protein tyrosine kinase substrate, the involvement of which in cytoskeletal rearrangements has been linked to its ability to activate Rho family small GTPases. beta(1) integrin ligation by fibronectin induced Vav1 phosphorylation in peripheral blood lymphocytes and in two different T cell lines. Vav1 overexpression led to massive T cell spreading on beta(1) integrin ligands, and, conversely, two dominant negative mutants blocked integrin-induced spreading. Vav1 and beta(1) integrin ligation synergistically activated Pak, but not Rac, Cdc42, or c-Jun N-terminal kinase. In addition, Vav1 cooperated with constitutively active V12Rac mutant, but not with V12Cdc42, to induce T cell spreading after integrin occupancy. More importantly, a Vav1 mutant that lacked guanine exchange factor activity still cooperated with V12Rac. In contrast, a point mutation in the SH2 domain of Vav1 abolished this synergistic effect. Therefore, our results suggest a new regulatory effect of Vav1 in T cell spreading, which is independent of its guanine exchange factor activity
    • 

    corecore