904 research outputs found

    Few-Body Systems Composed of Heavy Quarks

    Full text link
    Within the past ten years many new hadrons states were observed experimentally, some of which do not fit into the conventional quark model. I will talk about the few-body systems composed of heavy quarks, including the charmonium-like states and some loosely bound states.Comment: Plenary talk at the 20th International IUPAP Conference on Few-Body Problems in Physics, to appear in Few Body Systems (2013

    Responses of mRNA expression of PepT1 in small intestine to graded duodenal soybean small peptides infusion in lactating goats

    Get PDF
    To study the effect of circulation small peptides concentration on mRNA expression in small intestine, graded amount of soybean small peptides (SSP) were infused into lactating goats through duodenal fistulas. Peptide-bound amino acid (PBAA) concentration in arterial plasma and the mRNA expression of PepT1 was detected in the current study. The results showed that concentrations of all peptidebound amino acids (PBAA) increased and the activity of PepT1 in duodenum tissue was enhanced by SSP infusion. The PepT1expression in duodenum tissue was significantly increased with the increment of amounts of SSP infusion (

    Assessing the genetic diversity of cultivars and wild soybeans using SSR markers

    Get PDF
    Increasing the diversity of the soybean germplasm base could introduce new genes affecting agronomic traits. In this study, we demonstrated the differences of genetic diversity level among 40 soybean accessions of cultivars, landraces and wild soybeans collected in the Shanxi Agricultural University using 40 simple sequence repeat (SSR) primer pairs. The structure based on model result showed that the cultivars, landraces and wild soybeans could be divided into three groups. Comparison of three types of soybeans showed that wild soybeans and landraces showed higher genetic diversity level than cultivars. The average genetic diversity index of wild soybeans and landraces was 1.5421 and 1.2864, while that of cultivars was 1.0981. A total number of alleles in wild soybeans were 224, while those in cultivars and landraces were 182 and 148, respectively, which were 81.25 and 66.07% of wild soybeans. The higher genetic distance (0.6414) and genetic differentiation (0.1200) and the lower genetic identity (0.5265) and gene flow (1.8338) between wild soybeans and cultivars were found. The proportion of low frequency alleles (allele frequency < 0.15) was the highest in wild soybeans (57.5%), followed by landraces (42%) and cultivars (29.8%). The UPGMA results also showed that wide soybean were of more abundant genetic diversity than cultivars. These results indicated that wild soybeans and landraces possessed greater allelic diversity than cultivars and might contain alleles not present in the cultivars which can strengthen further conservation and utilization.Key words: Soybean, simple sequence repeat, genetic diversity

    Intrinsic Size OF Sgr A*: 72 Schwarzschild Radii

    Get PDF
    Recent proper motion studies of stars at the very center of the Galaxy strongly suggest that Sagittarius (Sgr) A*, the compact nonthermal radio source at the Galactic Center, is a 2.5 million solar mass black hole. By means of near-simultaneous multi-wavelength Very Long Baseline Array measurements, we determine for the first time the intrinsic size and shape of Sgr A* to be 72 Rsc by < 20 Rsc, with the major axis oriented essentially north-south, where Rsc (= 7.5 x 10^{11} cm) is the Schwarzschild radius for a 2.5 million solar mass black hole. Contrary to previous expectation that the intrinsic structure of Sgr A* is observable only at wavelengths shorter than 1 mm, we can discern the intrinsic source size at 7 mm because (1) the scattering size along the minor axis is half that along the major axis, and (2) the near simultaneous multi-wavelength mapping of Sgr A* with the same interferometer makes it possible to extrapolate precisely the minor axis scattering angle at 7 mm. The intrinsic size and shape place direct constraints on the various emission models for Sgr A*. In particular, the advection dominated accretion flow model may have to incorporate a radio jet in order to account for the structure of Sgr A*.Comment: 15 pages including 2 ps figures and 1 table, to appear in ApJ Letter

    Insights into the Ecological Roles and Evolution of Methyl-Coenzyme M Reductase-Containing Hot Spring Archaea

    Get PDF
    Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phylum Thaumarchaeota that contains mcr genes, but not those for ammonia oxidation or aerobic metabolism, is identified. Together, our phylogenetic analyses and ancestral state reconstructions suggest a mostly vertical evolution of mcrABG genes among methanogens and methanotrophs, along with frequent horizontal gene transfer of mcr genes between alkanotrophs. Analysis of all mcr-containing archaeal MAGs/genomes suggests a hydrothermal origin for these microorganisms based on optimal growth temperature predictions. These results also suggest methane/alkane oxidation or methanogenesis at high temperature likely existed in a common archaeal ancestor

    Genomic diversity among Basmati rice (Oryza sativa L) mutants obtained through 60Co gamma radiations using AFLP markers

    Get PDF
    Mutation breeding can be considered successful in obtaining new cultivars and broadening the genetic base of rice crop. In order to obtain new varieties of rice with improved agronomic and grain characteristics, gamma radiation (60Co) has been used to generate novel mutants of the Basmati rice. In this study rice cultivars; Basmati-370 and Basmati-Pak, were exposed to different doses of gamma radiations and stable mutants along with parents were studied for genomic diversity on the basis of molecular marker (AFLP). Morphological data showed that mutants of Basmati-370 performed well for yield and yield components and grain physical parameters whereas, the mutant EL-30-2-1 has extra long rain trait as compared to the parent (Basmati-Pak). The genetic variations determined through AFLP revealed a total of 282 scorable bands, out of which 108 (37.81%) were polymorphic. The number of fragments produced by various primers combinations ranged from 11 - 26 with an average of 17.63fragments per primer combination. Maximum 26 bands were amplified with P-AAG/M-CAG primer combination and minimum one band was amplified with P-ATG/M-CTA primer combination. Two groups of genotypes were detected; group-A had DM-1-30-3-99, DM-1-30-34-99 and EF-1-20-52-04 mutants along with parent Basmati-370, whereas the group-B contained EL-30-2-1 and parent Basmati-Pak. The results of AFLP analysis indicated that the rate of polymorphism was 4.43% (DM-1-30-3-99), 4.25% (DM-1-30-34-99) and 6.38% (EF-1-20-52-04) among the genomes of mutants and parent Basmati-370, respectively, whereas polymorphism rate was 5.32% between genome of EL-30-2-1 and Basmati-Pak. The study further confirmed that the use of gamma radiations is an effective approach for creating new rice germplasm

    Epitaxial growth of high quality ZnS films on sapphire and silicon by pulsed laser deposition

    Full text link
    We report for the first time, epitaxial growth of high-quality ZnS films on sapphire and silicon substrates, using pulsed laser deposition. X-ray diffraction results show that at all growth temperatures from 200°C to 680°C, epitaxial wurtzite (002) ZnS films have been successfully grown on (1012) sapphire and (001) silicon substrates. X-ray diffraction data yield full width at half maximum 2theta values of 0.13° for as-grown samples, compared with 28 values or 0.09° and 0.08° for the bare sapphire and silicon substrates respectively

    Mesorhizobium septentrionale sp nov and Mesorhizobium temperatum sp nov., isolated from Astragalus adsurgens growing in the northern regions of China

    Get PDF
    Ninety-five rhizobial strains isolated from Astragalus adsurgens growing in the northern regions of China were classified into three main groups, candidate species 1, 11 and 111, based on a polyphasic approach. Comparative analysis of full-length 16S rRNA gene sequences of representative strains showed that candidate species I and 11 were Mesorhizobium, while candidate species 111, which consisted of non-nodulating strains, was closely related to Agrobacterium tumefaciens. The phylogenetic relationships of the three candidate species and some related strains were also confirmed by the sequencing of glnA genes, which were used as an alternative chromosomal marker. The DNA-DNA relatedness was between 11.3 and 47-1 % among representative strains of candidate species I and 11 and the type strains of defined Mesorhizobium species. Candidate III had DNA relatedness of between 4(.)3 and 25(.)2 % with type strains of Agrobacterium tumefaciens and Agrobacterium rubi. Two novel species are proposed to accommodate candidate species I and 11, Mesorhizobium septentrionale sp. nov. (type strain, SIDW014(T) =CCBAU 11014(T) = HAMBI 2582(T)) and Mesorhizobium temperatum sp. nov. (type strain, SIDW018(T) = CCBAU 11018(T) =HAMBI 2583(T)), respectively. At least two distinct nodA sequences were identified among the strains. The numerically dominant nodA sequence type was most similar to that from the Mesorhizobium tianshanense type strain and was identified in strains belonging to the two novel species as well as other, as yet, undefined genome types. Host range studies indicate that the different nodA sequences correlate with different host ranges. Further comparative studies with the defined Agrobacterium species are needed to clarify the taxonomic identity of candidate species 111
    • …
    corecore