5,461 research outputs found
On normal torsion-free finite index subgroups of polyhedral groups
AbstractSuppose that P is a convex polyhedron of finite volume in the hyperbolic 3-space such that each dihedral angle is an integer (>1) submultiple of π. We show that the abelianization of any normal torsion-free finite index subgroup of the polyhedral group associated to P is not isomorphic to Z, the group of integers
Anisotropic sub-Doppler laser cooling in dysprosium magneto-optical traps
Magneto-optical traps (MOTs) of Er and Dy have recently been shown to exhibit
population-wide sub-Doppler cooling due to their near degeneracy of excited and
ground state Lande g factors. We discuss here an additional, unusual intra-MOT
sub-Doppler cooling mechanism that appears when the total Dy MOT cooling laser
intensity and magnetic quadrupole gradient increase beyond critical values.
Specifically, anisotropically sub-Doppler-cooled cores appear, and their
orientation with respect to the quadrupole axis flips at a critical ratio of
the MOT laser intensity along the quadrupole axis versus that in the plane of
symmetry. This phenomenon can be traced to a loss of the velocity-selective
resonance at zero velocity in the cooling force along directions in which the
atomic polarization is oriented by the quadrupole field. We present data
characterizing this anisotropic laser cooling phenomenon and discuss a
qualitative model for its origin based on the extraordinarily large Dy magnetic
moment and Dy's near degenerate g factors.Comment: 4 pages, 5 figure
Thermo-viscoplastic analysis of hypersonic structures subjected to severe aerodynamic heating
A thermoviscoplastic computational method for hypersonic structures is presented. The method employs unified viscoplastic constitutive model implemented in a finite element approach for quasi-static thermal-structural analysis. Applications of the approach to convectively cooled hypersonic structures illustrate the effectiveness of the approach and provide insight into the transient inelastic structural behavior at elevated temperatures
Low-velocity anisotropic Dirac fermions on the side surface of topological insulators
We report anisotropic Dirac-cone surface bands on a side-surface geometry of
the topological insulator BiSe revealed by first-principles
density-functional calculations. We find that the electron velocity in the
side-surface Dirac cone is anisotropically reduced from that in the
(111)-surface Dirac cone, and the velocity is not in parallel with the wave
vector {\bf k} except for {\bf k} in high-symmetry directions. The size of the
electron spin depends on the direction of {\bf k} due to anisotropic variation
of the noncollinearity of the electron state. Low-energy effective Hamiltonian
is proposed for side-surface Dirac fermions, and its implications are presented
including refractive transport phenomena occurring at the edges of tological
insulators where different surfaces meet.Comment: 4 pages, 2 columns, 4 figure
Spectroscopy of a narrow-line laser cooling transition in atomic dysprosium
The laser cooling and trapping of ultracold neutral dysprosium has been
recently demonstrated using the broad, open 421-nm cycling transition.
Narrow-line magneto-optical trapping of Dy on longer wavelength transitions
would enable the preparation of ultracold Dy samples suitable for loading
optical dipole traps and subsequent evaporative cooling. We have identified the
closed 741-nm cycling transition as a candidate for the narrow-line cooling of
Dy. We present experimental data on the isotope shifts, the hyperfine constants
A and B, and the decay rate of the 741-nm transition. In addition, we report a
measurement of the 421-nm transition's linewidth, which agrees with previous
measurements. We summarize the laser cooling characteristics of these
transitions as well as other narrow cycling transitions that may prove useful
for cooling Dy.Comment: 6+ pages, 5 figures, 5 table
Late Onset of Cerebellar Abiotrophy in a Boxer Dog
Cerebellar abiotrophy is a degenerative disorder of the central nervous system and has been reported in humans and animals. This case report documents clinical, histopathological, and immunohistochemical findings of cerebellar abiotrophy in an adult Boxer dog. A 3.5-year-old, female, tan Boxer dog presented with a six-week history of left-sided head tilt. Neurological examination and additional diagnostics during her three subsequent visits over 4.5 months revealed worsening of neurological signs including marked head pressing, severe proprioceptive deficits in all the four limbs, loss of menace response and palpebral reflex in the left eye, and a gradual seizure lasting one hour at her last visit. Based on the immunohistochemical staining for glial fibrillary acidic protein and histopathological examination of cerebellum, cerebellar cortical abiotrophy was diagnosed. This is the first reported case of cerebellar abiotrophy in a Boxer dog to our knowledge
Spatial and temporal characterization of a Bessel beam produced using a conical mirror
We experimentally analyze a Bessel beam produced with a conical mirror,
paying particular attention to its superluminal and diffraction-free
properties. We spatially characterized the beam in the radial and on-axis
dimensions, and verified that the central peak does not spread over a
propagation distance of 73 cm. In addition, we measured the superluminal phase
and group velocities of the beam in free space. Both spatial and temporal
measurements show good agreement with the theoretical predictions.Comment: 5 pages, 6 figure
Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing
Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.EPSRC (grant EP/H026177/1)
Noise temperature measurements for axion haloscope experiments at IBS/CAPP
The axion was first introduced as a consequence of the Peccei-Quinn mechanism
to solve the CP problem in strong interactions of particle physics and is a
well motivated cold dark matter candidate. This particle is expected to
interact extremely weakly with matter and its mass is expected to lie in
eV range with the corresponding frequency roughly in GHz range. In 1983 P.
Sikivie proposed a detection scheme, so called axion haloscope, where axions
resonantly convert to photons in a tunable microwave cavity permeated by a
strong magnetic field. A major source of the experimental noise is attributed
to added noise by RF amplifiers, and thus precise understandings of amplifiers'
noise is of importance. We present the measurements of noise temperatures of
various low noise amplifiers broadly used for axion dark matter searches.Comment: 7 pages, 3 figure
- …