33,214 research outputs found

    Spin Polarisability of the Nucleon in the Heavy Baryon Effective Field Theory

    Full text link
    We have constructed a heavy baryon effective field theory with photon as an external field in accordance with the symmetry requirements similar to the heavy quark effective field theory. By treating the heavy baryon and anti-baryon equally on the same footing in the effective field theory, we have calculated the spin polarisabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon at third order and at fourth-order of the spin-dependent Compton scattering. At leading order (LO), our results agree with the corresponding results of the heavy baryon chiral perturbation theory, at the next-to-leading order(NLO) the results show a large correction to the ones in the heavy baryon chiral perturbation theory due to baryon-antibaryon coupling terms. The low energy theorem is satisfied both at LO and at NLO. The contributions arising from the heavy baryon-antibaryon vertex were found to be significant and the results of the polarisabilities obtained from our theory is much closer to the experimental data.Comment: 21pages, title changed, minimal correction

    Rayleigh-Brillouin light scattering spectroscopy of nitrous oxide (N2_2O)

    Get PDF
    High signal-to-noise and high-resolution light scattering spectra are measured for nitrous oxide (N2_2O) gas at an incident wavelength of 403.00 nm, at 90∘^\circ scattering, at room temperature and at gas pressures in the range 0.5−40.5-4 bar. The resulting Rayleigh-Brillouin light scattering spectra are compared to a number of models describing in an approximate manner the collisional dynamics and energy transfer in this gaseous medium of this polyatomic molecular species. The Tenti-S6 model, based on macroscopic gas transport coefficients, reproduces the scattering profiles in the entire pressure range at less than 2\% deviation at a similar level as does the alternative kinetic Grad's 6-moment model, which is based on the internal collisional relaxation as a decisive parameter. A hydrodynamic model fails to reproduce experimental spectra for the low pressures of 0.5-1 bar, but yields very good agreement (<1< 1\%) in the pressure range 2−42-4 bar. While these three models have a different physical basis the internal molecular relaxation derived can for all three be described in terms of a bulk viscosity of ηb∼(6±2)×10−5\eta_b \sim (6 \pm 2) \times 10^{-5} Pa⋅\cdots. A 'rough-sphere' model, previously shown to be effective to describe light scattering in SF6_6 gas, is not found to be suitable, likely in view of the non-sphericity and asymmetry of the N-N-O structured linear polyatomic molecule

    Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory

    Full text link
    Based on a large component QCD derived directly from full QCD by integrating over the small components of quark fields with ∣p∣<E+mQ|{\bf p}| < E + m_Q, an alternative quantization procedure is adopted to establish a basic theoretical framework of heavy quark effective field theory (HQEFT) in the sense of effective quantum field theory. The procedure concerns quantum generators of Poincare group, Hilbert and Fock space, anticommutations and velocity super-selection rule, propagator and Feynman rules, finite mass corrections, trivialization of gluon couplings and renormalization of Wilson loop. The Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated. Some new symmetries in the infinite mass limit are discussed. Weak transition matrix elements and masses of hadrons in HQEFT are well defined to display a manifest spin-flavor symmetry and 1/mQ1/m_Q corrections. A simple trace formulation approach is explicitly demonstrated by using LSZ reduction formula in HQEFT, and shown to be very useful for parameterizing the transition form factors via 1/mQ1/m_Q expansion. As the heavy quark and antiquark fields in HQEFT are treated on the same footing in a fully symmetric way, the quark-antiquark coupling terms naturally appear and play important roles for simplifying the structure of transition matrix elements, and for understanding the concept of `dressed heavy quark' - hadron duality. In the case that the `longitudinal' and `transverse' residual momenta of heavy quark are at the same order of power counting, HQEFT provides a consistent approach for systematically analyzing heavy quark expansion in terms of 1/mQ1/m_Q. Some interesting features in applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio

    Symmetry-preserving Loop Regularization and Renormalization of QFTs

    Full text link
    A new symmetry-preserving loop regularization method proposed in \cite{ylw} is further investigated. It is found that its prescription can be understood by introducing a regulating distribution function to the proper-time formalism of irreducible loop integrals. The method simulates in many interesting features to the momentum cutoff, Pauli-Villars and dimensional regularization. The loop regularization method is also simple and general for the practical calculations to higher loop graphs and can be applied to both underlying and effective quantum field theories including gauge, chiral, supersymmetric and gravitational ones as the new method does not modify either the lagrangian formalism or the space-time dimension of original theory. The appearance of characteristic energy scale McM_c and sliding energy scale μs\mu_s offers a systematic way for studying the renormalization-group evolution of gauge theories in the spirit of Wilson-Kadanoff and for exploring important effects of higher dimensional interaction terms in the infrared regime.Comment: 13 pages, Revtex, extended modified version, more references adde

    Electronic States and Magnetism of Mn Impurities and Dimers in Narrow-Gap and Wide-Gap III-V Semiconductors

    Full text link
    Electronic states and magnetic properties of single MnMn impurity and dimer doped in narrow-gap and wide-gap IIIIII-VV semiconductors have been studied systematically. It has been found that in the ground state for single MnMn impurity, MnMn-As(N)As(N) complex is antiferromagnetic (AFM) coupling when pp-dd hybridization VpdV_{pd} is large and both the hole level EvE_{v} and the impurity level EdE_{d} are close to the midgap; or very weak ferromagnetic (FM) when VpdV_{pd} is small and both EvE_{v} and EdE_d are deep in the valence band. In MnMn dimer situation, the MnMn spins are AFM coupling for half-filled or full-filled pp orbits; on the contrast, the Mn spins are double-exchange-like FM coupling for any pp-orbits away from half-filling. We propose the strong {\it p-d} hybridized double exchange mechanism is responsible for the FM order in diluted IIIIII-VV semiconductors
    • …
    corecore