337 research outputs found

    Meson Emission Model of Psi to N Nbar m Charmonium Strong Decays

    Full text link
    In this paper we consider a sequential "meson emission" mechanism for charmonium decays of the type Psi -> N Nbar m, where Psi is a generic charmonium state, N is a nucleon and m is a light meson. This decay mechanism, which may not be dominant in general, assumes that an NNbar pair is created during charmonium annihilation, and the light meson m is emitted from the outgoing nucleon or antinucleon line. A straightforward generalization of this model can incorporate intermediate N* resonances. We derive Dalitz plot event densities for the cases Psi = eta_c, J/psi, chi_c0, chi_c1} and psi' and m = pi0, f0 and omega (and implicitly, any 0^{-+}, 0^{++} or 1^{--} final light meson). It may be possible to separate the contribution of this decay mechanism to the full decay amplitude through characteristic event densities. For the decay subset Psi -> p pbar pi0 the two model parameters are known, so we are able to predict absolute numerical partial widths for Gamma(Psi -> p pbar pi0). In the specific case J/psi -> p pbar pi0 the predicted partial width and M_{p pi0} event distribution are intriguingly close to experiment. We also consider the possibility of scalar meson and glueball searches in Psi -> p pbar f0. If the meson emission contributions to Psi -> N Nbar m decays can be isolated and quantified, they can be used to estimate meson-nucleon strong couplings {g_NNm}, which are typically poorly known, and are a crucial input in meson exchange models of the NN interaction. The determination of g_NNpi from J\psi -> p pbar pi0 and the (poorly known) g_NNomega and the anomalous "strong magnetic" coupling kappa_{NNomega} from J/psi -> p pbar omega are considered as examples.Comment: 10 pages, 5 figure

    Insight into the Modulation of Shaw2 Kv Channels by General Anesthetics: Structural and Functional Studies of S4-S5 linker and S6 C-terminal peptides in micelles by NMR

    Get PDF
    The modulation of the Drosophila Shaw2 Kv channel by 1-alkanols and inhaled anesthetics is correlated with the involvement of the S4–S5 linker and C-terminus of S6, and consistent with stabilization of the channel\u27s closed state. Structural analysis of peptides from S4–S5 (L45) and S6 (S6c), by nuclear magnetic resonance and circular dichroism spectroscopy supports that an α-helical conformation was adopted by L45, while S6c was only in an unstable/dynamic partially folded α-helix in dodecylphosphocholine micelles. Solvent accessibility and paramagnetic probing of L45 revealed that L45 lies parallel to the surface of micelles with charged and polar residues pointing towards the solution while hydrophobic residues are buried inside the micelles. Chemical shift perturbation introduced by 1-butanol on residues Gln320, Thr321, Phe322 and Arg323 of L45, as well as Thr423 and Gln424 of S6c indicates possible anesthetic binding sites on these two important components in the channel activation apparatus. Diffusion measurements confirmed the association of L45, S6c and 1-butanol with micelles which suggests the capability of 1-butanol to influence a possible interaction of L45 and S6c in the micelle environment

    Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses

    Full text link
    Analyses of phenomena exhibiting finite-time decay of quantum entanglement have recently attracted considerable attention. Such decay is often referred to as sudden vanishing (or sudden death) of entanglement, which can be followed by its sudden reappearance (or sudden rebirth). We analyze various finite-time decays (for dissipative systems) and analogous periodic vanishings (for unitary systems) of nonclassical correlations as described by violations of classical inequalities and the corresponding nonclassicality witnesses (or quantumness witnesses), which are not necessarily entanglement witnesses. We show that these sudden vanishings are universal phenomena and can be observed: (i) not only for two- or multi-mode but also for single-mode nonclassical fields, (ii) not solely for dissipative systems, and (iii) at evolution times which are usually different from those of sudden vanishings and reappearances of quantum entanglement.Comment: 10 pages, 3 figure

    Spin Squeezing under Non-Markovian Channels by Hierarchy Equation Method

    Full text link
    We study spin squeezing under non-Markovian channels, and consider an ensemble of NN independent spin-1/2 particles with exchange symmetry. Each spin interacts with its own bath, and the baths are independent and identical. For this kind of open system, the spin squeezing under decoherence can be investigated from the dynamics of the local expectations, and the multi-qubit dynamics can be reduced into the two-qubit one. The reduced dynamics is obtained by the hierarchy equation method, which is a exact without rotating-wave and Born-Markov approximation. The numerical results show that the spin squeezing displays multiple sudden vanishing and revival with lower bath temperature, and it can also vanish asymptotically.Comment: 7 pages, 4 figure

    Broadcasting Quantum Fisher Information

    Full text link
    It is well known that classical information can be cloned, but non-orthogonal quantum states cannot be cloned, and non-commuting quantum states cannot be broadcast. We conceive a scenario in which the object we want to broadcast is the statistical distinguishability, as quantified by quantum Fisher information, about a signal parameter encoded in quantum states. We show that quantum Fisher information cannot be cloned, whilst it might be broadcast even when the input states are non-commuting. This situation interpolates between cloning of classical information and no-broadcasting of quantum information, and indicates a hybrid way of information broadcasting which is of particular significance from both practical and theoretical perspectives.Comment: 5 pages. Improved version. Any comments is welcom

    Ultra-sustainable Fe 78 Si 9 B 13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light

    Get PDF
    Stability and reusability are important characteristics of advanced catalysts for wastewater treatment. In this work, for the first time, sulfate radicals (SO4') with a high oxidative potential (Eo = 2.5-3.1 V) were successfully activated from persulfate by a Fe78Si9B13 metallic glass. This alloy exhibited a superior surface stability and reusability while activating persulfate as indicated by it being used for 30 times while maintaining an acceptable methylene blue (MB) degradation rate. The produced SiO2 layer on the ribbon surface expanded strongly from the fresh use to the 20th use, providing stable protection of the buried Fe. MB degradation and kinetic study revealed 100% of the dye degradation with a kinetic rate k = 0.640 within 20 min under rational parameter control. The dominant reactive species for dye molecule decomposition in the first 10 min of the reaction was hydroxyl radicals (OH,Eo = 2.7 V) and in the last 10 min was sulfate radicals (SO4'), respectively. Empirical operating variables for dye degradation in this work were under catalyst dosage 0.5 g/L, light irradiation 7.7 µW/cm2, and persulfate concentration 1.0 mmol/L. The amorphous Fe78Si9B13 alloy in this work will open a new gate for wastewater remediation. © 2016 The Author(s)

    Pairwise entanglement in the XX model with a magnetic impurity

    Full text link
    For a 3-qubit Heisenberg model in a uniform magnetic field, the pairwise thermal entanglement of any two sites is identical due to the exchange symmetry of sites. In this paper we consider the effect of a non-uniform magnetic field on the Heisenberg model, modeling a magnetic impurity on one site. Since pairwise entanglement is calculated by tracing out one of the three sites, the entanglement clearly depends on which site the impurity is located. When the impurity is located on the site which is traced out, that is, when it acts as an external field of the pair, the entanglement can be enhanced to the maximal value 1; while when the field acts on a site of the pair the corresponding concurrence can only be increased from 1/3 to 2/3.Comment: 9 Pages, 4 EPS figures, LaTeX 2

    Necessary and sufficient condition for saturating the upper bound of quantum discord

    Full text link
    We revisit the upper bound of quantum discord given by the von Neumann entropy of the measured subsystem. Using the Koashi-Winter relation, we obtain a trade-off between the amount of classical correlation and quantum discord in the tripartite pure states. The difference between the quantum discord and its upper bound is interpreted as a measure on the classical correlative capacity. Further, we give the explicit characterization of the quantum states saturating the upper bound of quantum discord, through the equality condition for the Araki-Lieb inequality. We also demonstrate that the saturating of the upper bound of quantum discord precludes any further correlation between the measured subsystem and the environment.Comment: 5 pages, 1figures, version accepted Phys.Rev.A, 85, 032109 (2012

    Bipartite entanglement and localization of one-particle states

    Full text link
    We study bipartite entanglement in a general one-particle state, and find that the linear entropy, quantifying the bipartite entanglement, is directly connected to the paricitpation ratio, charaterizing the state localization. The more extended the state is, the more entangled the state. We apply the general formalism to investigate ground-state and dynamical properties of entanglement in the one-dimensional Harper model.Comment: 4 pages and 3 figures. Version
    corecore