728 research outputs found
On a property of random-oriented percolation in a quadrant
Grimmett's random-orientation percolation is formulated as follows. The
square lattice is used to generate an oriented graph such that each edge is
oriented rightwards (resp. upwards) with probability and leftwards (resp.
downwards) otherwise. We consider a variation of Grimmett's model proposed by
Hegarty, in which edges are oriented away from the origin with probability ,
and towards it with probability , which implies rotational instead of
translational symmetry. We show that both models could be considered as special
cases of random-oriented percolation in the NE-quadrant, provided that the
critical value for the latter is 1/2. As a corollary, we unconditionally obtain
a non-trivial lower bound for the critical value of Hegarty's
random-orientation model. The second part of the paper is devoted to higher
dimensions and we show that the Grimmett model percolates in any slab of height
at least 3 in .Comment: The abstract has been updated, discussion has been added to the end
of the articl
Polarization of Quasars: Resonant Line Scattering in the Broad Absorption Line Region
Recent works showed that the absorbing material in broad absorption line
(BAL) quasars is optically thick to major resonant absorption lines. This
material may contribute significantly to the polarization in the absorption
lines. In this paper, we present a detailed study of the resonant line
scattering process using Monte-Carlo method to constrain the optical depth, the
geometry and the kinematics of BAL Region (BALR). By comparing our results with
observed polarized spectra of BAL quasars, we find: (1) Resonant scattering can
produce polarization up to 9% at the absorption trough for doublet transitions
and up to 20% for singlet transitions in radially accelerated flows. To explain
the large polarization degree in the CIV, NV absorption line troughs detected
in a small fraction of BAL QSOs, a nonmonotonic velocity distribution along the
line of sight or/and additional contribution from the electron scattering
region is required. (2) The rotation of the flow can lead to the rotation of
the polarization position angle (PA) in the line trough. Large extending angle
of BALR is required to produce the observed large PA rotation in a few BAL
QSOs. (3) A large extending angle of BALR is required to explain a sub-trough
in the polarized flux that was observed in a number of BAL QSOs. (4) The
resonant-scattering can contribute a significant part of NV emission line in
some QSOs, and may give rise to anomalous strong NV lines in these quasars. (5)
The polarized flux and PA rotation produced by the resonant scattering in
non-BAL is uniquely asymmetric, which may be used to test the presence of BALR
in non-BAL QSOs.Comment: 54 pages, 26 figures, accepted by ApJS, contact author by email for
version with higher resolution figure
Posttraumatic Stress Disorder Biomarker â p11
Post-traumatic stress disorder (PTSD) is a chronic and disabling anxiety disorder associated with a traumatic event [1]. It is linked to increased risk of suicide and deficits in social functioning [2, 3]. Despite extensive study in psychiatry, the underlying mechanisms of PTSD are still poorly understood [4, 5]. Currently, the diagnosis for PTSD is based on clinical observation and symptom checklist [4, 6-8] and no laboratory blood-based tests. Although biomarker discovery for PTSD is not easy [8], a reliable biomarker would significantly impact the diagnosis and therapeutic monitoring of PTSD. Developing interventions to identify and treat PTSD requires objective approaches to determining the presence of PTSD [8]. Substantial data indicate several potential biomarkers for PTSD. Of these candidate markers, p11 (S100A10) has been studied in PTSD animal models [7] and in human subjects with PTSD [6]. We found that p11 is over-expressed in both animal models and post-mortem brains of subjects with PTSD [7]. Incorporating testing of p11, a novel biomarker for PTSD, into clinical practice, along with more subjective measures, such as participantsâ medical history, mental status, duration of symptoms, and symptom checklist or self-report, would provide additional power to predict impending PTSD. In this chapter, we discuss the biomarker concept and the potential clinical utility of PTSD biomarkers. We further discuss the potential of p11 as a PTSD biomarker and as a tool that may enhance PTSD diagnosis and intervention in health care practice
The Shenzhen Declaration on Plant Sciences â Uniting plant sciences and society to build a green, sustainable Earth
© 2017 Shenzhen Declaration Drafting Committee. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The file attached is the Published/publisherâs pdf version of the article
An Updated Search of Steady TeV Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array
Using the data taken from Tibet II High Density (HD) Array (1997
February-1999 September) and Tibet-III array (1999 November-2005 November), our
previous northern sky survey for TeV ray point sources has now been
updated by a factor of 2.8 improved statistics. From to
in declination (Dec) range, no new TeV ray point
sources with sufficiently high significance were identified while the
well-known Crab Nebula and Mrk421 remain to be the brightest TeV ray
sources within the field of view of the Tibet air shower array. Based on the
currently available data and at the 90% confidence level (C.L.), the flux upper
limits for different power law index assumption are re-derived, which are
approximately improved by 1.7 times as compared with our previous reported
limits.Comment: This paper has been accepted by hepn
A millisecond quantum memory for scalable quantum networks
Scalable quantum information processing critically depends on the capability
of storage of a quantum state. In particular, a long-lived storable and
retrievable quantum memory for single excitations is of crucial importance to
the atomic-ensemble-based long-distance quantum communication. Although atomic
memories for classical lights and continuous variables have been demonstrated
with milliseconds storage time, there is no equal advance in the development of
quantum memory for single excitations, where only around 10 s storage time
was achieved. Here we report our experimental investigations on extending the
storage time of quantum memory for single excitations. We isolate and identify
distinct mechanisms for the decoherence of spin wave (SW) in atomic ensemble
quantum memories. By exploiting the magnetic field insensitive state, ``clock
state", and generating a long-wavelength SW to suppress the dephasing, we
succeed in extending the storage time of the quantum memory to 1 ms. Our result
represents a substantial progress towards long-distance quantum communication
and enables a realistic avenue for large-scale quantum information processing.Comment: 11pages, 4 figures, submitted for publicatio
Pairing symmetry and properties of iron-based high temperature superconductors
Pairing symmetry is important to indentify the pairing mechanism. The
analysis becomes particularly timely and important for the newly discovered
iron-based multi-orbital superconductors. From group theory point of view we
classified all pairing matrices (in the orbital space) that carry irreducible
representations of the system. The quasiparticle gap falls into three
categories: full, nodal and gapless. The nodal-gap states show conventional
Volovik effect even for on-site pairing. The gapless states are odd in orbital
space, have a negative superfluid density and are therefore unstable. In
connection to experiments we proposed possible pairing states and implications
for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
- âŠ