143 research outputs found

    Seagrass habitats of northeast Australia: models of key processes and controls

    Get PDF
    An extensive and diverse assemblage of seagrass habitats exists along the tropical and subtropical coastline of north east Australia and the associated Great Barrier Reef. In their natural state, these habitats are characterised by very low nutrient concentrations and are primarily nitrogen limited. Summer rainfall and tropical storms/cyclones lead to large flows of sediment-laden fresh water. Macro grazers, dugongs (Dugong dugon) and green sea turtles (Chelonia mydas) are an important feature in structuring tropical Australian seagrass communities. In general, all seagrass habitats in north east Australia are influenced by high disturbance and are both spatially and temporally variable. This paper classifies the diversity into four habitat types and proposes the main limiting factor for each habitat. The major processes that categorise each habitat are described and significant threats or gaps in understanding are identified. Four broad categories of seagrass habitat are defined as 'River estuaries', 'Coastal', 'Deep water' and 'Reef', and the dominant controlling factors are terrigenous runoff, physical disturbance, low light and low nutrients, respectively. Generic concepts of seagrass ecology and habitat function have often been found inappropriate to the diverse range of seagrass habitats in north east Australian waters. The classification and models developed here explain differences in habitats by identifying ecological functions and potential response to impacts in each habitat. This understanding will help to better focus seagrass management and research in tropical habitats

    Asymmetric patterns of recovery in two habitat forming seagrass species following simulated overgrazing by urchins

    Get PDF
    The persistence of seagrass meadows reflects variation in factors that influence their productivity and consumption. Sea urchins (Amblypneustes pallidus) can over-graze seagrass (Amphibolis antarctica) to create sparse meadows in South Australia, but this effect is not observed in adjacent Posidonia sinuosa meadows despite greater densities of inhabiting urchins. To test the effect of urchin grazing on seagrass biomass, we elevated the density of urchins in meadows of A. antarctica and P. sinuosa and quantified seagrass decline. Urchins removed similar amounts of biomass from both seagrass species, but the loss of leaf meristems was 11-times greater in A. antarctica than in P. sinuosa. In a second experiment to assess the recovery of seagrass, we simulated urchin grazing by clipping seagrass to mimic impacts measured in the first experiment, as well as completely removing all above ground biomass in one treatment. Following simulated grazing, P. sinuosa showed a rapid trajectory toward recovery, while A. antarctica meadows continued to decline relative to control treatments. While both A. antarctica and P. sinuosa were susceptible to heavy grazing loss, consumption of the exposed meristems of A. antarctica appears to reduce its capacity to recover, which may increase its vulnerability to long-term habitat phase-shifts and associated cascading ecosystem changes. © 2013 Elsevier B.V.Owen W. Burnell, Sean D. Connell, Andrew D. Irving, Bayden D. Russel

    Seagrass restoration is possible: insights and lessons from Australia and New Zealand

    Get PDF
    Seagrasses are important marine ecosystems situated throughout the world's coastlines. They are facing declines around the world due to global and local threats such as rising ocean temperatures, coastal development and pollution from sewage outfalls and agriculture. Efforts have been made to reduce seagrass loss through reducing local and regional stressors, and through active restoration. Seagrass restoration is a rapidly maturing discipline, but improved restoration practices are needed to enhance the success of future programs. Major gaps in knowledge remain, however, prior research efforts have provided valuable insights into factors influencing the outcomes of restoration and there are now several examples of successful large-scale restoration programs. A variety of tools and techniques have recently been developed that will improve the efficiency, cost effectiveness, and scalability of restoration programs. This review describes several restoration successes in Australia and New Zealand, with a focus on emerging techniques for restoration, key considerations for future programs, and highlights the benefits of increased collaboration, Traditional Owner (First Nation) and stakeholder engagement. Combined, these lessons and emerging approaches show that seagrass restoration is possible, and efforts should be directed at upscaling seagrass restoration into the future. This is critical for the future conservation of this important ecosystem and the ecological and coastal communities they support

    Seagrass restoration is possible:Insights and lessons from Australia and New Zealand

    Get PDF
    Seagrasses are important marine ecosystems situated throughout the world’s coastlines. They are facing declines around the world due to global and local threats such as rising ocean temperatures, coastal development and pollution from sewage outfalls and agriculture. Efforts have been made to reduce seagrass loss through reducing local and regional stressors, and through active restoration. Seagrass restoration is a rapidly maturing discipline, but improved restoration practices are needed to enhance the success of future programs. Major gaps in knowledge remain, however, prior research efforts have provided valuable insights into factors influencing the outcomes of restoration and there are now several examples of successful large-scale restoration programs. A variety of tools and techniques have recently been developed that will improve the efficiency, cost effectiveness, and scalability of restoration programs. This review describes several restoration successes in Australia and New Zealand, with a focus on emerging techniques for restoration, key considerations for future programs, and highlights the benefits of increased collaboration, Traditional Owner (First Nation) and stakeholder engagement. Combined, these lessons and emerging approaches show that seagrass restoration is possible, and efforts should be directed at upscaling seagrass restoration into the future. This is critical for the future conservation of this important ecosystem and the ecological and coastal communities they support

    A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.)

    Get PDF
    Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC3S2 near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2–3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds

    The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    Get PDF
    Seagrasses colonized the sea(1) on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet(2). Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes(3), genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae(4) and that is important for ion homoeostasis, nutrient uptake and O-2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming(5,6), to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants(7)

    Seagrass and submerged aquatic vegetation (VAS) habitats off the Coast of Brazil: state of knowledge, conservation and main threats

    Get PDF
    Seagrass meadows are among the most threatened ecosystems on earth, raising concerns about the equilibrium of coastal ecosystems and the sustainability of local fisheries. The present review evaluated the current status of the research on seagrasses and submerged aquatic vegetation (SAV) habitats off the coast of Brazil in terms of plant responses to environmental conditions, changes in distribution and abundance, and the possible role of climate change and variability. Despite an increase in the number of studies, the communication of the results is still relatively limited and is mainly addressed to a national or regional public; thus, South American seagrasses are rarely included or cited in global reviews and models. The scarcity of large-scale and long-term studies allowing the detection of changes in the structure, abundance and composition of seagrass habitats and associated species still hinders the investigation of such communities with respect to the potential effects of climate change. Seagrass meadows and SAV occur all along the Brazilian coast, with species distribution and abundance being strongly influenced by regional oceanography, coastal water masses, river runoff and coastal geomorphology. Based on these geomorphological, hydrological and ecological features, we characterised the distribution of seagrass habitats and abundances within the major coastal compartments. The current conservation status of Brazilian seagrasses and SAV is critical. The unsustainable exploitation and occupation of coastal areas and the multifold anthropogenic footprints left during the last 100 years led to the loss and degradation of shoreline habitats potentially suitable for seagrass occupation. Knowledge of the prevailing patterns and processes governing seagrass structure and functioning along the Brazilian coast is necessary for the global discussion on climate change. Our review is a first and much-needed step toward a more integrated and inclusive approach to understanding the diversity of coastal plant formations along the Southwestern Atlantic coast as well as a regional alert the projected or predicted effects of global changes on the goods and services provided by regional seagrasses and SAV

    Low genotypic diversity and long-term ecological decline in a spatially structured seagrass population

    Get PDF
    In isolated or declining populations, viability may be compromised further by loss of genetic diversity. Therefore, it is important to understand the relationship between long-term ecological trajectories and population genetic structure. However, opportunities to combine these types of data are rare, especially in natural systems. Using an existing panel of 15 microsatellites, we estimated allelic diversity in seagrass, Zostera marina, at five sites around the Isles of Scilly Special Area of Conservation, UK, in 2010 and compared this to 23 years of annual ecological monitoring (1996–2018). We found low diversity and long-term declines in abundance in this relatively pristine but isolated location. Inclusion of the snapshot of genotypic, but less-so genetic, diversity improved prediction of abundance trajectories; however, this was spatial scale-dependent. Selection of the appropriate level of genetic organization and spatial scale for monitoring is, therefore, important to identify drivers of eco-evolutionary dynamics. This has implications for the use of population genetic information in conservation, management, and spatial planning

    Analysis of RAPD and AFLP markers linked to resistance to Fusarium oxysporum f. sp. lactucae race 2 in lettuce (Lactuca sativa L.)

    Get PDF
    Root rot of lettuce, which is caused by Fusarium oxysporum f. sp. lactucae (FOL), is a critical problem in the production of lettuce. FOL-resistant lettuce genetic resources have been identified and used in breeding programs to produce FOL-resistant cultivars. However, the genetic characteristics of resistance genes have not been studied in depth and, therefore, no DNA markers are presently available for these genes. In this study, we analyzed the RRD2 (resistance for root rot disease race 2) locus, which confers resistance to FOL race 2. Resistance loci were analyzed using two cultivars of crisphead lettuce: VP1013 (resistant) and Patriot (susceptible). The segregation patterns of resistant phenotypes in F-2 indicated a single major locus. To define the positions of resistance loci, a linkage map was constructed using amplified fragment length polymorphism and random amplified polymorphic DNA (RAPD) markers. Quantitative trait loci analysis revealed the position of the major resistance locus. A high LOD score was observed for RAPD-marker WF25-42, and this marker showed good correspondence to the phenotype in different cultivars and lines. We successfully developed a sequence characterized amplified region marker from WF25-42.ArticleEUPHYTICA. 187(1):1-9 (2012)journal articl
    corecore