54 research outputs found

    The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Get PDF
    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases with a broadening of the transition. For this reason the influence of a drug on the time scale of domain formation processes can be understood on the basis of their influence on the heat capacity profile. This allows estimations of the time scale of domain formation processes in biological membranes.Comment: 12 pages, 6 figure

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    Multifrequency calorimetry of the folding/unfolding transition of cytochrome c.

    Get PDF
    The folding-unfolding transition of Fe(III) cytochrome c has been studied with the new technique of multifrequency calorimetry. Multifrequency calorimetry is aimed at measuring directly the dynamics of the energetic events that take place during a thermally induced transition by measuring the frequency dispersion of the heat capacity. This is done by modulating the folding/unfolding equilibrium using a variable frequency, small oscillatory temperature perturbation (approximately 0.05-0.1 degrees C) centered at the equilibrium temperature of the system. Fe(III) cytochrome c at pH 4 undergoes a fully reversible folding/unfolding transition centered at 67.7 degrees C and characterized by an enthalpy change of 81 kcal/mol and heat capacity difference between unfolded and folded states of 0.9 kcal/K*mol. By measuring the temperature dependence of the frequency dispersion of the heat capacity in the frequency range of 0.1-1 Hz it has been possible to examine the time regime of the enthalpic events associated with the transition. The multifrequency calorimetry results indicate that approximately 85% of the excess heat capacity associated with the folding/unfolding transition relaxes with a single relaxation time of 326 +/- 68 ms at the midpoint of the transition region. This is the first time that the time regime in which heat is absorbed and released during protein folding/unfolding has been measured

    Gel-liquid crystalline transition of some multilamellar lipid bilayers follows classical kinetics with a fractional dimensionality of approximately two.

    Get PDF
    The relaxation kinetics of the gel-liquid crystalline transition of phosphatidylcholine (DC14PC, DC16PC, and DC18PC) multilamellar vesicles have been examined using volume-perturbation calorimetry. The time-dependent temperature and pressure changes associated with a periodic volume perturbation are monitored in real time. Data collected in the time domain are transformed to the frequency domain using Fourier series representations of the perturbation and response functions. Because a very small perturbation is imposed during the experiment, linear response theory is suitable for analysis of the relaxation process. The Laplace transform of the classical Kolmogorov-Avrami relation of transition kinetics is used to describe the dynamic response in the frequency domain. For DC14PC and DC16PC, the relaxation process is better fit with an effective dimensionality of n = 2 rather than n = 1. For DC18PC, we estimate that an effective dimensionality of approximately 1.5 will best fit the data. These results indicate that the gel-liquid crystalline transition of these lipid bilayers follows the classical Kolmogorov-Avrami kinetic model with an effective dimensionality greater than 1 and the assumption of simple exponential decay (n = 1) commonly used in data analysis may not always be valid for lipid transitions. Insofar as the dimensionality of the relaxation reflects the geometry of fluctuating lipid clusters, this parameter may be useful in connecting experimental thermodynamic and kinetic results with those obtained from Monte Carlo simulations

    Relaxation dynamics of the gel to liquid-crystalline transition of phosphatidylcholine bilayers. Effects of chainlength and vesicle size.

    Get PDF
    The relaxation kinetics of the gel to liquid-crystalline transition of five phosphatidylcholine (DC14PC to DC18PC) bilayer dispersions have been investigated using volume perturbation calorimetry, a steady-state technique which subjects a sample to sinusoidal changes in volume. Temperature and pressure responses to the volume perturbation are measured to monitor the relaxation to a new equilibrium position. The amplitude demodulation and phase shift of these observables are analyzed with respect to the perturbation frequency to yield relaxation times and amplitudes. In the limit of low perturbation frequency, the temperature and pressure responses are proportional to the equilibrium excess heat capacity and bulk modulus, respectively. At all temperatures, the thermal response data are consistent with a single primary relaxation process of the lipid. The less accurate bulk modulus data exhibit two relaxation times, but it is not clear whether they reflect lipid processes or are characteristic of the instrument. The observed thermal relaxation behavior of all multilamellar vesicles are quantitatively similar. The relaxation times vary from approximately 50 ms to 4 s, with a pronounced maximum at a temperature just greater than Tm, the temperature of the excess heat capacity maximum. Large unilamellar vesicles also exhibit a single relaxation process, but without a pronounced maximum in the relaxation time. Their relaxation time is approximately 80 ms over most of the transition range
    corecore