16,101 research outputs found
The paracrinology of tubal ectopic pregnancy
As part of successful human reproduction, the Fallopian tube must provide a suitable environment for pre-implantation development of the embryo and for efficient transport of the embryo to the uterus for implantation. These functions are coordinated by paracrine interactions between tubal epithelial, smooth muscle and immune cells and the cells of the developing embryo. Alterations in these signals can lead to a tubal microenvironment encouraging of embryo implantation and to dysregulated tubal motility, ultimately resulting in inappropriate and early implantation of the embryo in the Fallopian tube. Here, we highlight novel and emerging concepts in tubal physiology and pathobiology, such as the induction of a receptive phenotype within the Fallopian tube, leading to ectopic implantation. Chlamydia trachomatis infection is a risk factor for tubal ectopic pregnancy. Activation of toll-like receptor 2 (TLR-2) in the Fallopian tube epithelium, by C. trachomatis has recently been demonstrated, leading to the dysregulation of factors involved in implantation and smooth muscle contractility, such as prokineticins (PROK), activin A and interleukin 1 (IL-1). The Fallopian tube has also recently been shown to harbour a unique population of immune cells, compared to the endometrium. In addition, the complement of immune cells in the Fallopian tube has been reported to be altered in Fallopian tube from women with ectopic pregnancy. There are increasing data suggesting that vascularisation of the Fallopian tube, by the embryo during ectopic pregnancy, differs from that initiated in the uterus during normal pregnancy. This too, is likely the result of paracrine signals between the embryo and the tubal microenvironment
Neural superposition and oscillations in the eye of the blowfly
Neural superposition in the eye of the blowfly Calliphora erythrocephala was investigated by stimulating single photoreceptors using corneal neutralization through water immersion. Responses in Large Monopolar Cells (LMCs) in the lamina were measured, while stimulating one or more of the six photoreceptors connected to the LMC. Responses to flashes of low light intensity on individual photoreceptors add approximately linearly at the LMC. Higher intensity light flashes produce a maximum LMC response to illumination of single photoreceptors which is about half the maximum response to simultaneous illumination of the six connecting photoreceptors. This observation indicates that a saturation can occur at a stage of synaptic transmission which precedes the change in the post-synaptic membrane potential.
Stimulation of single photoreceptors yields high frequency oscillations (about 200 Hz) in the LMC potential, much larger in amplitude than produced by simultaneous stimulation of the six photoreceptors connected to the LMC. It is discussed that these oscillations also arise from a mechanism that precedes the change in the postsynaptic membrane potential.
(Super)twistors and (super)strings
The Lagrangian formulation of the D=4 bosonic string and superstring in terms
of the (super)twistors is considered. The (super)twistor form of the equations
of motion is derived and the kappa-symmetry transformation for the
supertwistors is given. It is shown that the covariant kappa-symmetry gauge
fixation results in the action quadratic in the (super)twistor variables.Comment: LaTeX, 17 page
A Note on the Gauge Equivalence between the Manin-Radul and Laberge-Mathieu Super KdV Hierarchies
The gauge equivalence between the Manin-Radul and Laberge-Mathieu super KdV
hierarchies is revisited. Apart from the Inami-Kanno transformation, we show
that there is another gauge transformation which also possess the canonical
property. We explore the relationship of these two gauge transformations from
the Kupershmidt-Wilson theorem viewpoint and, as a by-product, obtain the
Darboux-Backlund transformation for the Manin-Radul super KdV hierarchy. The
geometrical intepretation of these transformations is also briefly discussed.Comment: 8 pages, revtex, 1 figur
B\"{a}cklund transformations for the KP and mKP hierarchies with self-consistent sources
Using gauge transformations for the corresponding generating
pseudo-differential operators in terms of eigenfunctions and adjoint
eigenfunctions, we construct several types of auto-B\"{a}cklund transformations
for the KP hierarchy with self-consistent sources (KPHSCS) and mKP hierarchy
with self-consistent sources (mKPHSCS) respectively. The B\"{a}cklund
transformations from the KPHSCS to mKPHSCS are also constructed in this way.Comment: 22 pages. to appear in J.Phys.
High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared
We report on high-efficiency superconducting nanowire single-photon detectors
based on amorphous WSi and optimized at 1064 nm. At an operating temperature of
1.8 K, we demonstrated a 93% system detection efficiency at this wavelength
with a dark noise of a few counts per second. Combined with cavity-enhanced
spontaneous parametric down-conversion, this fiber-coupled detector enabled us
to generate narrowband single photons with a heralding efficiency greater than
90% and a high spectral brightness of
photons/(smWMHz). Beyond single-photon generation at large rate,
such high-efficiency detectors open the path to efficient multiple-photon
heralding and complex quantum state engineering
Recommended from our members
Evolutionary bi-stability in pathogen transmission mode
Many pathogens transmit to new hosts by both infection (horizontal transmission) and transfer to the
infected host's offspring (vertical transmission). These two transmission modes require speci®c adap-
tations of the pathogen that can be mutually exclusive, resulting in a trade-off between horizontal and
vertical transmission. We show that in mathematical models such trade-offs can lead to the simultaneous
existence of two evolutionary stable states (evolutionary bi-stability) of allocation of resources to the two
modes of transmission. We also show that jumping between evolutionary stable states can be induced by
gradual environmental changes. Using quantitative PCR-based estimates of abundance in seed and vege-
tative parts, we show that the pathogen of wheat, Phaeosphaeria nodorum, has jumped between two
distinct states of transmission mode twice in the past 160 years, which, based on published evidence,
we interpret as adaptation to environmental change. The ®nding of evolutionary bi-stability has impli-
cations for human, animal and other plant diseases. An ill-judged change in a disease control
programme could cause the pathogen to evolve a new, and possibly more damaging, combination of
transmission modes. Similarly, environmental changes can shift the balance between transmission
modes, with adverse effects on human, animal and plant health
- …