616 research outputs found

    Constraints on Extrasolar Planet Populations from VLT NACO/SDI and MMT SDI and Direct Adaptive Optics Imaging Surveys: Giant Planets are Rare at Large Separations

    Full text link
    We examine the implications for the distribution of extrasolar planets based on the null results from two of the largest direct imaging surveys published to date. Combining the measured contrast curves from 22 of the stars observed with the VLT NACO adaptive optics system by Masciadri et al. (2005), and 48 of the stars observed with the VLT NACO SDI and MMT SDI devices by Biller et al. (2007) (for a total of 60 unique stars; the median star for our survey is a 30 Myr K2 star at 25 pc), we consider what distributions of planet masses and semi-major axes can be ruled out by these data, based on Monte Carlo simulations of planet populations. We can set this upper limit with 95% confidence: the fraction of stars with planets with semi-major axis from 20 to 100 AU, and mass >4 M_Jup, is 20% or less. Also, with a distribution of planet mass of dN/dM ~ M^-1.16 between 0.5-13 M_Jup, we can rule out a power-law distribution for semi-major axis (dN/da ~ a^alpha) with index 0 and upper cut-off of 18 AU, and index -0.5 with an upper cut-off of 48 AU. For the distribution suggested by Cumming et al. (2007), a power-law of index -0.61, we can place an upper limit of 75 AU on the semi-major axis distribution. At the 68% confidence level, these upper limits state that fewer than 8% of stars have a planet of mass >4 M_Jup between 20 and 100 AU, and a power-law distribution for semi-major axis with index 0, -0.5, and -0.61 cannot have giant planets beyond 12, 23, and 29 AU, respectively. In general, we find that even null results from direct imaging surveys are very powerful in constraining the distributions of giant planets (0.5-13 M_Jup) at large separations, but more work needs to be done to close the gap between planets that can be detected by direct imaging, and those to which the radial velocity method is sensitive.Comment: 46 pages, 17 figures, accepted to Ap

    Fusion Operators in the Generalized τ(2)\tau^{(2)}-model and Root-of-unity Symmetry of the XXZ Spin Chain of Higher Spin

    Full text link
    We construct the fusion operators in the generalized τ(2)\tau^{(2)}-model using the fused LL-operators, and verify the fusion relations with the truncation identity. The algebraic Bethe ansatz discussion is conducted on two special classes of τ(2)\tau^{(2)} which include the superintegrable chiral Potts model. We then perform the parallel discussion on the XXZ spin chain at roots of unity, and demonstrate that the sl2sl_2-loop-algebra symmetry exists for the root-of-unity XXZ spin chain with a higher spin, where the evaluation parameters for the symmetry algebra are identified by the explicit Fabricius-McCoy current for the Bethe states. Parallels are also drawn to the comparison with the superintegrable chiral Potts model.Comment: Latex 33 Pages; Typos and errors corrected, New improved version by adding explanations for better presentation. Terminology in the content and the title refined. References added and updated-Journal versio

    Thermal and ground-state entanglement in Heisenberg XX qubit rings

    Get PDF
    We study the entanglement of thermal and ground states in Heisernberg XXXX qubit rings with a magnetic field. A general result is found that for even-number rings pairwise entanglement between nearest-neighbor qubits is independent on both the sign of exchange interaction constants and the sign of magnetic fields. As an example we study the entanglement in the four-qubit model and find that the ground state of this model without magnetic fields is shown to be a four-body maximally entangled state measured by the NN-tangle.Comment: Four pages and one figure, small change

    Finite temperature Drude weight of the one dimensional spin 1/2 Heisenberg model}

    Full text link
    Using the Bethe ansatz method, the zero frequency contribution (Drude weight) to the spin current correlations is analyzed for the easy plane antiferromagnetic Heisenberg model. The Drude weight is a monotonically decreasing function of temperature for all 0<Delta< 1, it approaches the zero temperature value with a power law and it appears to vanish for all finite temperatures at the isotropic Delta=1 point.Comment: 5 pages, 2 Postscript figure

    Irreducibility criterion for a finite-dimensional highest weight representation of the sl(2) loop algebra and the dimensions of reducible representations

    Full text link
    We present a necessary and sufficient condition for a finite-dimensional highest weight representation of the sl2sl_2 loop algebra to be irreducible. In particular, for a highest weight representation with degenerate parameters of the highest weight, we can explicitly determine whether it is irreducible or not. We also present an algorithm for constructing finite-dimensional highest weight representations with a given highest weight. We give a conjecture that all the highest weight representations with the same highest weight can be constructed by the algorithm. For some examples we show the conjecture explicitly. The result should be useful in analyzing the spectra of integrable lattice models related to roots of unity representations of quantum groups, in particular, the spectral degeneracy of the XXZ spin chain at roots of unity associated with the sl2sl_2 loop algebra.Comment: 32 pages with no figure; with corrections on the published versio

    Field-induced Commensurate-Incommensurate phase transition in a Dzyaloshinskii-Moriya spiral antiferromagnet

    Full text link
    We report an observation of a commensurate-incommensurate phase transition in a Dzyaloshinskii-Moriya spiral magnet Ba_2CuGe_2O_7. The transition is induced by applying a magnetic field in the plane of spin rotation. In this experiment we have direct control over the strength of the commensurate potential, while the preferred incommensurate period of the spin system remains unchanged. Experimental results for the period of the soliton lattice and bulk magnetization as a function of external magnetic field are in quantitative agreement with theory.Comment: 4 pages, 4 figures, submitted to PR

    17O NMR study of q=0 spin excitations in a nearly ideal S=1/2 1D Heisenberg antiferromagnet, Sr2CuO3, up to 800 K

    Full text link
    We used 17O NMR to probe the uniform (wavevector q=0) electron spin excitations up to 800 K in Sr2CuO3 and separate the q=0 from the q=\pm\pi/a staggered components. Our results support the logarithmic decrease of the uniform spin susceptibility below T ~ 0.015J, where J=2200 K. From measurement of the dynamical spin susceptibility for q=0 by the spin-lattice relaxation rate 1/T_{1}, we demonstrate that the q=0 mode of spin transport is ballistic at the T=0 limit, but has a diffusion-like contribution at finite temperatures even for T << J.Comment: Submitted to Phys. Rev. Lett. 4 pages, 4 figure

    Conductivity of quantum-spin chains: A Quantum Monte Carlo approach

    Full text link
    We discuss zero-frequency transport properties of various spin-1/2 chains. We show, that a careful analysis of Quantum Monte-Carlo (QMC) data on the imaginary axis allows to distinguish between intrinsic ballistic and diffusive transport. We determine the Drude weight, current-relaxation life-time and the mean-free path for integrable and a non-integrable quantum-spin chain. We discuss, in addition, some phenomenological relations between various transport-coefficients and thermal response functions

    Field-induced incommensurate-to-commensurate transition in Ba_2CuGe_2O_7

    Full text link
    We report an observation of a commensurate-incommensurate phase transition in the Dzyaloshinskii-Moriya spiral antiferromagnet Ba_2 Cu Ge_2 O_7. The transition is induced by an external magnetic field applied along the c-axis of the tetragonal structure, i. e., in the plane of spin rotation. Bulk magnetic measurements and neutron diffraction experiments show that the transition occurs in a critical field Hc=2.1T. Experimental results for the period of the magnetic structure and magnetization as functions of magnetic field are in quantitative agreement with our exact analytical solution for Dzyaloshinskii's model of commensurate-incommensurate transitions in spiral magnets.Comment: 11 double column pages, 9 figures, submitted to PR

    Excitation Spectra of Structurally Dimerized and Spin-Peierls Chains in a Magnetic Field

    Full text link
    The dynamical spin structure factor and the Raman response are calculated for structurally dimerized and spin-Peierls chains in a magnetic field, using exact diagonalization techniques. In both cases there is a spin liquid phase composed of interacting singlet dimers at small fields h < h_c1, an incommensurate regime (h_c1 < h < h_c2) in which the modulation of the triplet excitation spectra adapts to the applied field, and a fully spin polarized phase above an upper critical field h_c2. For structurally dimerized chains, the spin gap closes in the incommensurate phase, whereas spin-Peierls chains remain gapped. In the spin liquid regimes, the dominant feature of the triplet spectra is a one-magnon bound state, separated from a continuum of states at higher energies. There are also indications of a singlet bound state above the one-magnon triplet.Comment: RevTex, 10 pages with 8 eps figure
    corecore