256 research outputs found
Health-Care Use and Cost in Dementia Caregivers: Longitudinal Results from the Predictors Caregiver Study
OBJECTIVE: To examine the effects of caregiver and patient characteristics on caregivers' medical care use and cost. METHODS: One hundred forty-seven caregiver/patient dyads were followed annually for 6 years in three academic Alzheimer's disease centers in the United States. Logistic, negative binomial, and generalized linear mixed models were used to examine overall effects of caregiver/patient characteristics on caregivers' hospitalizations, doctor visits, outpatient tests and procedures, and prescription and over-the-counter medications. RESULTS: Patients' comorbid conditions and dependence were associated with increased health-care use and costs of caregivers. Increases in caregiver depressive symptoms are associated with increases in multiple domains of caregivers' health-care use and costs. DISCUSSION: Findings suggest expanding our focus on dementia patients to include family caregivers to obtain a fuller picture of effects of caregiving. Primary care providers should integrate caregivers' needs in health-care planning and delivery. Clinical interventions that treat patients and caregivers as a whole will likely achieve the greatest beneficial effects
A Targeted and Tuneable DNA Damage Tool Using CRISPR/Cas9
Mammalian cells are constantly subjected to a variety of DNA damaging events that lead to the activation of DNA repair pathways. Understanding the molecular mechanisms of the DNA damage response allows the development of therapeutics which target elements of these pathways. Double-strand breaks (DSB) are particularly deleterious to cell viability and genome stability. Typically, DSB repair is studied using DNA damaging agents such as ionising irradiation or genotoxic drugs. These induce random lesions at non-predictive genome sites, where damage dosage is difficult to control. Such interventions are unsuitable for studying how different DNA damage recognition and repair pathways are invoked at specific DSB sites in relation to the local chromatin state. The RNA-guided Cas9 (CRISPR-associated protein 9) endonuclease enzyme is a powerful tool to mediate targeted genome alterations. Cas9-based genomic intervention is attained through DSB formation in the genomic area of interest. Here, we have harnessed the power to induce DSBs at defined quantities and locations across the human genome, using custom-designed promiscuous guide RNAs, based on in silico predictions. This was achieved using electroporation of recombinant Cas9-guide complex, which provides a generic, low-cost and rapid methodology for inducing controlled DNA damage in cell culture models. View Full-Tex
DNA damage alters nuclear mechanics through chromatin reorganization
AbstractDNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance
Myosin VI regulates the spatial organisation of mammalian transcription initiation.
During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI (MVI) in the nanoscale organisation of RNAPII. We reveal that MVI in the nucleus acts as the molecular anchor that holds RNAPII in high density clusters. Perturbation of MVI leads to the disruption of RNAPII localisation, chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of MVI in the spatial regulation of gene expression
Satellite remote sensing data can be used to model marine microbial metabolite turnover
Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes’ predicted relative abundance was highly correlated (Pearson Correlation 0.72, P-value <10−6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ~3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology
Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by
driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and
seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for
possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2
gradient ranging from ,0.5–250 mmol kg21 (i.e. ,20–6000 matm pCO2) at three different temperatures (i.e. 10, 15, 20uC for
E. huxleyi and 15, 20, 25uC for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth,
photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and
production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for
growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate
temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high
temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and
carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean
acidification at a given temperature can be negative, neutral or positive depending on that strain’s temperature optimum.
This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when
interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of
changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the
future ocean
PREDIVAC: CD4+T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity
Background: CD4+ T-cell epitopes play a crucial role in eliciting vigorous protective immune responses during peptide (epitope)-based vaccination. The prediction of these epitopes focuses on the peptide binding process by MHC class II proteins. The ability to account for MHC class II polymorphism is critical for epitope-based vaccine design tools, as different allelic variants can have different peptide repertoires. In addition, the specificity of CD4+ T-cells is often directed to a very limited set of immunodominant peptides in pathogen proteins. The ability to predict what epitopes are most likely to dominate an immune response remains a challenge
A role for the cell-wall protein silacidin in cell size of the diatom Thalassiosira pseudonana
Diatoms contribute 20% of global primary production and form the basis of many marine food webs. Although their species diversity correlates with broad diversity in cell size, there is also an intraspecific cell-size plasticity due to sexual reproduction and varying environmental conditions. However, despite the ecological significance of the diatom cell size for food-web structure and global biogeochemical cycles, our knowledge about genes underpinning the size of diatom cells remains elusive. Here, a combination of reverse genetics, experimental evolution and comparative RNA8 sequencing analyses enabled us to identify a previously unknown genetic control of cell size in the diatom Thalassiosira pseudonana. In particular, the targeted deregulation of the expression of the cell-wall protein silacidin caused a significant increase in valve diameter. Remarkably, the natural downregulation of the silacidin gene transcript due to experimental evolution under low temperature also correlated with cell-size increase. Our data give first evidence for a genetically controlled regulation of cell size in Thalassiosira pseudonana and possibly other centric diatoms as they also encode the silacidin gene in their genomes
Interventions targeting social isolation in older people: a systematic review
This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.BACKGROUND: Targeting social isolation in older people is a growing public health concern. The proportion of older people in society has increased in recent decades, and it is estimated that approximately 25% of the population will be aged 60 or above within the next 20 to 40 years. Social isolation is prevalent amongst older people and evidence indicates the detrimental effect that it can have on health and wellbeing. The aim of this review was to assess the effectiveness of interventions designed to alleviate social isolation and loneliness in older people. METHODS: Relevant electronic databases (MEDLINE, EMBASE, ASSIA, IBSS, PsycINFO, PubMed, DARE, Social Care Online, the Cochrane Library and CINAHL) were systematically searched using an extensive search strategy, for randomised controlled trials and quasi-experimental studies published in English before May 2009. Additional articles were identified through citation tracking. Studies were included if they related to older people, if the intervention aimed to alleviate social isolation and loneliness, if intervention participants were compared against inactive controls and, if treatment effects were reported. Two independent reviewers extracted data using a standardised form. Narrative synthesis and vote-counting methods were used to summarise and interpret study data. RESULTS: Thirty two studies were included in the review. There was evidence of substantial heterogeneity in the interventions delivered and the overall quality of included studies indicated a medium to high risk of bias. Across the three domains of social, mental and physical health, 79% of group-based interventions and 55% of one-to-one interventions reported at least one improved participant outcome. Over 80% of participatory interventions produced beneficial effects across the same domains, compared with 44% of those categorised as non-participatory. Of interventions categorised as having a theoretical basis, 87% reported beneficial effects across the three domains compared with 59% of interventions with no evident theoretical foundation. Regarding intervention type, 86% of those providing activities and 80% of those providing support resulted in improved participant outcomes, compared with 60% of home visiting and 25% of internet training interventions. Fifty eight percent of interventions that explicitly targeted socially isolated or lonely older people reported positive outcomes, compared with 80% of studies with no explicit targeting. CONCLUSIONS: More, well-conducted studies of the effectiveness of social interventions for alleviating social isolation are needed to improve the evidence base. However, it appeared that common characteristics of effective interventions were those developed within the context of a theoretical basis, and those offering social activity and/or support within a group format. Interventions in which older people are active participants also appeared more likely to be effective. Future interventions incorporating all of these characteristics may therefore be more successful in targeting social isolation in older people.National Institute for Health Researc
- …