310 research outputs found
Polariton Bose-Einstein condensate at room temperature in a Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap
A spatial potential trap is formed in a 6.0 {\mu}m Al(Ga)N nanowire by
varying the Al composition along its length during epitaxial growth. The
polariton emission characteristics of a dielectric microcavity with the single
nanowire embedded in-plane has been studied at room temperature. Excitation is
provided at the Al(Ga)N end of the nanowire and polariton emission is observed
from the lowest bandgap GaN region of the nanowire. Comparison of the results
with those measured in an identical microcavity with an uniform GaN nanowire
and having an identical exciton-photon detuning suggests evaporative cooling of
the polaritons as they are transported across the trap in the Al(Ga)N nanowire.
Measurement of the spectral characteristics of the polariton emission, their
momentum distribution, first-order spatial coherence and time-resolved
measurements of polariton cooling provide strong evidence of the formation of
an equilibrium Bose-Einstein condensate, a unique state of matter in solid
state systems, in the GaN region of the nanowire, at room temperature. An
equilibrium condensate is not formed in the GaN nanowire dielectric microcavity
without the spatial potential trap.Comment: 28 pages, 6 figures, Submitted to the Proceedings of the National
Academy of Sciences of the United States of Americ
Excitons in T-shaped quantum wires
We calculate energies, oscillator strengths for radiative recombination, and
two-particle wave functions for the ground state exciton and around 100 excited
states in a T-shaped quantum wire. We include the single-particle potential and
the Coulomb interaction between the electron and hole on an equal footing, and
perform exact diagonalisation of the two-particle problem within a finite basis
set. We calculate spectra for all of the experimentally studied cases of
T-shaped wires including symmetric and asymmetric GaAs/AlGaAs and
InGaAs/AlGaAs structures. We study in detail the
shape of the wave functions to gain insight into the nature of the various
states for selected symmetric and asymmetric wires in which laser emission has
been experimentally observed. We also calculate the binding energy of the
ground state exciton and the confinement energy of the 1D quantum-wire-exciton
state with respect to the 2D quantum-well exciton for a wide range of
structures, varying the well width and the Al molar fraction . We find that
the largest binding energy of any wire constructed to date is 16.5 meV. We also
notice that in asymmetric structures, the confinement energy is enhanced with
respect to the symmetric forms with comparable parameters but the binding
energy of the exciton is then lower than in the symmetric structures. For
GaAs/AlGaAs wires we obtain an upper limit for the binding energy
of around 25 meV in a 10 {\AA} wide GaAs/AlAs structure which suggests that
other materials must be explored in order to achieve room temperature
applications. There are some indications that
InGaAs/AlGaAs might be a good candidate.Comment: 20 pages, 10 figures, uses RevTeX and psfig, submitted to Physical
Review
Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum dot nano-probe
Nuclear spin polarization dynamics are measured in optically pumped
individual GaAs/AlGaAs interface quantum dots by detecting the time-dependence
of the Overhauser shift in photoluminescence (PL) spectra. Long nuclear
polarization decay times of ~ 1 minute have been found indicating inefficient
nuclear spin diffusion from the GaAs dot into the surrounding AlGaAs matrix in
externally applied magnetic field. A spin diffusion coefficient two orders
lower than that previously found in bulk GaAs is deduced.Comment: 5 pages, 3 figures, submitted to Phys Rev
Gain in a quantum wire laser of high uniformity
A multi-quantum wire laser operating in the 1-D ground state has been
achieved in a very high uniformity structure that shows free exciton emission
with unprecedented narrow width and low lasing threshold. Under optical pumping
the spontaneous emission evolves from a sharp free exciton peak to a
red-shifted broad band. The lasing photon energy occurs about 5 meV below the
free exciton. The observed shift excludes free excitons in lasing and our
results show that Coulomb interactions in the 1-D electron-hole system shift
the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe
New detectors for the kaon and hypernuclear experiments with KaoS at MAMI and with PANDA at GSI
The KaoS spectrometer at the Mainz Microtron MAMI, Germany, is perceived as
the ideal candidate for a dedicated spectrometer in kaon and hypernuclei
electroproduction. KaoS will be equipped with new read-out electronics, a
completely new focal plane detector package consisting of scintillating fibres,
and a new trigger system. First prototypes of the fibre detectors and the
associated new front-end electronics are shown in this contribution. The Mainz
hypernuclei research program will complement the hypernuclear experiments at
the planned FAIR facility at GSI, Germany. At the proposed antiproton storage
ring the spectroscopy of double Lambda hypernuclei is one of the four main
topics which will be addressed by the PANDA Collaboration. The experiments
require the operation of high purity germanium (HPGe) detectors in high
magnetic fields (B= 1T) in the presence of a large hadronic background. The
performance of high resolution Ge detectors in such an environment has been
investigated.Comment: Presentation at International Symposium on the Development of
Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments,
Stanford, Ca (SNIC06), 6 pages, LaTeX, 11 eps figure
Quantum-fluid dynamics of microcavity polaritons
Semiconductor microcavities offer a unique system to investigate the physics
of weakly interacting bosons. Their elementary excitations, polaritons--a
mixture of excitons and photons--behave, in the low density limit, as bosons
that can undergo a phase transition to a regime characterised by long range
coherence. Condensates of polaritons have been advocated as candidates for
superfluidity; and the formation of vortices as well as elementary excitations
with a linear dispersion are actively sought after. In this work, we have
created and set in motion a macroscopically degenerate state of polaritons and
let it collide with a variety of defects present in the sample. Our experiments
show striking manifestations of a coherent light-matter packet that displays
features of a superfluid, although one of a highly unusual character as it
involves an out-of-equilibrium dissipative system where it travels at
ultra-fast velocity of the order of 1% the speed of light. Our main results are
the observation of i) a linear polariton dispersion accompanied with
diffusion-less motion, ii) flow without resistance when crossing an obstacle,
iii) suppression of Rayleigh scattering and iv) splitting into two fluids when
the size of the obstacle is comparable with the size of the wavepacket. This
work opens the way to the investigation of new phenomenology of
out-of-equilibrium condensates.Comment: 22 pages, 5 figure
Models of coherent exciton condensation
That excitons in solids might condense into a phase-coherent ground state was
proposed about 40 years ago, and has been attracting experimental and
theoretical attention ever since. Although experimental confirmation has been
hard to come by, the concepts released by this phenomenon have been widely
influential. This tutorial review discusses general aspects of the theory of
exciton and polariton condensates, focussing on the reasons for coherence in
the ground state wavefunction, the BCS to Bose crossover(s) for excitons and
for polaritons, and the relationship of the coherent condensates to standard
lasers.Comment: 27 pages, 6 figures. Submitted for a special issue of J. Phys. Cond.
Matt. associated with the EU network "Photon-mediated phenomena in
semiconductor nanostructures
Sinteza i biološko djelovanje novih 1-benzil i 1-benzoil 3-heterocikličkih derivata indola
Starting from 1-benzyl- (2a) and 1-benzoyl-3-bromoacetyl indoles (2b) new heterocyclic, 2-thioxoimidazolidine (4a,b), imidazolidine-2,4-dione (5a,b), pyrano(2,3-d)imidazole (8a,b and 9a,b), 2-substituted quinoxaline (11a,b–17a,b) and triazolo(4,3-a)quinoxaline derivatives (18a,b and 19a,b) were synthesized and evaluated for their antimicrobial and anticancer activities. Antimicrobial activity screening performed with concentrations of 0.88, 0.44 and 0.22 g mm2 showed that 3-(1-substituted indol-3-yl)quinoxalin-2(1H)ones (11a,b) and 2-(4-methyl piperazin-1-yl)-3-(1-substituted indol-3-yl) quinoxalines (15a,b) were the most active of all the tested compounds towards P. aeruginosa, B. cereus and S. aureus compared to the reference drugs cefotaxime and piperacillin, while 2-chloro-3-(1-substituted indol-3-yl)quinoxalines (12a,b) were the most active against C. albicans compared to the reference drug nystatin. On the other hand, 2-chloro-3-(1-benzyl indol-3-yl) quinoxaline (12a) display potent efficacy against ovarian cancer xenografts in nude mice with tumor growth suppression of 100 0.3 %.U radu je opisana sinteza, antimikrobno i antitumorsko djelovanje heterocikličkih derivata indola. Polazeći iz 1-benzil- i 1-benzoil-3-bromacetil indola (2a i 2b) sintetizirani su novi heterociklički spojevi 2-tioksoimidazolidini (4a,b), imidazolidin-2,4-dioni (5a,b), pirano(2,3-d)imidazoli (8a,b i 9a,b), 2-supstituirani kinoksalini (11a,b–17a,b) i triazolo(4,3-a)kinoksalini (18a,b i 19a,b). Sintetizirani spojevi testirani su na antimikrobno i antitumorsko djelovanje. Ispitivanje antimikrobnog djelovanja provedeno je s koncentracijama otopina 0,88, 0,44 i 0,22 g mm2 i uspoređeno s referentnim lijekovima cefotaksimom i piperacilinom. Rezultati pokazuju da su 3-(1-supstituirani indol-3-il)kinoksalin-2(1H)oni (11a,b) i 2-(4-metil piperazin-1-il)-3-(1-supstituirani indol-3-il) kinoksalini (15a,b) najaktivniji spojevi na sojeve P. aeruginosa, B. cereus i S. aureus, dok su 2-klor-3-(1-supstituirani indol-3-il)kinoksalini (12a,b) najaktivniji na C. albicans (usporedba s nistatinom). Osim toga, 2-klor-3-(1-benzil indol-3-il) kinoksalin (12a) pokazuje veliku učinkovitost na tumore ovarija miševa (supresija rasta tumora 100 0,3 %)
Anemia in Patients With Resistance to Thyroid Hormone α: A Role for Thyroid Hormone Receptor α in Human Erythropoiesis
Context: Patients with resistance to thyroid hormone (TH) α (RTHα) are characterized by growth retardation, macrocephaly, constipation, and abnormal thyroid function tests. In addition, almost all RTHα patients have mild anemia, the pathogenesis of which is unknown. Animal studies suggest an important role for TH and TH receptor (TR)α in erythropoiesis.Objective: To investigate whether a defect in TRα affects the maturation of red blood cells in RTHα patients.Design, Setting, and Patients: Cultures of primary human erythroid progenitor cells (HEPs), from peripheral blood of RTHα patients (n = 11) harboring different inactivating mutations in TRα (P398R, F397fs406X, C392X, R384H, A382fs388X, A263V, A263S), were compared with healthy controls (n = 11). During differentiation, erythroid cells become smaller, accumulate hemoglobin, and express different cell surface markers. We assessed cell number and cell size, and used cell staining and fluorescence-activated cell sorter analysis to monitor maturation at different time points.Results: After ∼14 days of ex vivo expansion, both control and patient-derived progenitors differentiated spontaneously. However, RTHα-derived cells differentiated more slowly. During spontaneous differentiation, RTHα-derived HEPs were larger, more positive for c-Kit (a proliferation marker), and less positive for glycophorin A (a differentiation marker). The degree of abnormal spontaneous maturation of RTHα-derived progenitors did not correlate with severity of underlying TRα defect. Both control and RTHα-derived progenitors responded similarly when differentiation was induced. T3 exposure accelerated differentiation of both control- and RTHα patient-derived HEPs.Conclusions: Inactivating mutations in human TRα affect the balance between proliferation and differentiation of progenitor cells d
- …