560 research outputs found
Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P
The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S
of muon capture from the singlet state of the muonic hydrogen atom to a
precision of 1%. A muon beam was stopped in a time projection chamber filled
with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented
scintillator barrel detected electrons from muon decay. L_S is determined from
the difference between the mu- disappearance rate in hydrogen and the free muon
decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from
which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1
and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06
+- 0.55.Comment: Updated figure 1 and small changes in wording to match published
versio
Coherent Rabi response of a charge-phase qubit under microwave irradiation
We report on radio-frequency measurements of the charge-phase qubit being
under continuous microwave irradiation in the state of weak coupling to a
radio-frequency tank circuit. We studied the rf impedance dependence on the two
important parameters such as power of microwave irradiation whose frequency is
close to the gap between the two lowest qubit energy levels, and temperature of
the internal heat bath. We have found that backaction effects of the qubit on
the rf tank, and vice versa, tank on the qubit, lead to a negative as well as a
positive real part of the qubit impedance Re seen by the tank. We
have implemented noise spectroscopy measurements for direct impedance readout
at the extreme points corresponding to maximum voltage response and obtained
absolute values of about 0.017 for the negative and positive
Re. Our results demonstrate the existence and persistence of the
coherent single- and multi-photon Rabi dynamics of the qubit with both negative
and positive dynamic resistance inserted into the tank in the temperature range
of 10 to 200 mK.Comment: 11 pages, 9 figure
Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling
The rate of nuclear muon capture by the proton has been measured using a new
experimental technique based on a time projection chamber operating in
ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture
rate was obtained from the difference between the measured
disappearance rate in hydrogen and the world average for the decay
rate. The target's low gas density of 1% compared to liquid hydrogen is key to
avoiding uncertainties that arise from the formation of muonic molecules. The
capture rate from the hyperfine singlet ground state of the atom is
measured to be , from which the induced
pseudoscalar coupling of the nucleon, , is
extracted. This result is consistent with theoretical predictions for
that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let
Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of <i>Plasmodium falciparum</i> into human erythrocytes
An effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion. In this study, we show that antibodies specific for PfRh5 and PfCyRPA prevent trimeric complex formation. We identify the EGF-7 domain on PfRipr as a neutralising epitope and demonstrate that antibodies against this region act downstream of complex formation to prevent merozoite invasion. Antibodies against the C-terminal region of PfRipr were more inhibitory than those against either PfRh5 or PfCyRPA alone, and a combination of antibodies against PfCyRPA and PfRipr acted synergistically to reduce invasion. This study supports prioritisation of PfRipr for development as part of a next-generation antimalarial vaccine
Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1
Complex conformational dynamics are essential for function of the dimeric molecular cha- perone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimer- ization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90
Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield
How insects promote crop pollination remains poorly understood in terms of the contribution of functional trait differences between species. We used meta-analyses to test for correlations between community abundance, species richness and functional trait metrics with oilseed rape yield, a globally important crop. While overall abundance is consistently important in predicting yield, functional divergence between species traits also showed a positive correlation. This result supports the complementarity hypothesis that pollination function is maintained by non-overlapping trait distributions. In artificially constructed communities (mesocosms), species richness is positively correlated with yield, although this effect is not seen under field conditions. As traits of the dominant species do not predict yield above that attributed to the effect of abundance alone, we find no evidence in support of the mass ratio hypothesis. Management practices increasing not just pollinator abundance, but also functional divergence, could benefit oilseed rape agriculture.This study was funded by the Natural Environment Research Council (NERC) under research programme NE/N018125/1 ASSIST–Achieving Sustainable Agricultural Systems www.assist.ceh.ac.uk. ASSIST is an initiative jointly supported by NERC and the Biotechnology and Biological Sciences Research Council (BBSRC). Additional funding for field studies was from the Wessex Biodiversity Ecosystem Services Sustainability (NE/J014680/1) project within the NERC BESS programme. Other data sets were generated from research funded by: (a) the Insect Pollinators Initiative programme funded by BBSRC, Defra, NERC, the Scottish Government and the Wellcome Trust, under the Living with Environmental Change Partnership; (b) Defra project BD5005: Provision of Ecosystem services in the ES scheme; and (c) Irish Government under the National Development Plan 2007–2013 administered by the Irish EPA
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …