3,282 research outputs found

    Identification of Colour Reconnection using Factorial Correlator

    Get PDF
    A new signal is proposed for the colour reconnection in the hadronic decay of W+ W- in e+e- collisions. Using Pythia Monte Carlo it is shown that this signal, being based on the factorial correlator, is more sensitive than the ones using only averaged quantities.Comment: 6 pages 1 postscript figur

    Semiclassical Time Evolution of the Holes from Luttinger Hamiltonian

    Full text link
    We study the semi-classical motion of holes by exact numerical solution of the Luttinger model. The trajectories obtained for the heavy and light holes agree well with the higher order corrections to the abelian and the non-abelian adiabatic theories in Ref. [1] [S. Murakami et al., Science 301, 1378(2003)], respectively. It is found that the hole trajectories contain rapid oscillations reminiscent of the "Zitterbewegung" of relativistic electrons. We also comment on the non-conservation of helicity of the light holes.Comment: 4 pages, 5 fugure

    Direct Printing of Microstructures by Femtosecond Laser Excitation of Nanocrystals in Solution

    Get PDF
    Direct writing using single or multiple energized beams (e.g. laser, ion or electron beams) provides high feature resolution ( \u3c 1µm) compared with other solution-based printing methods (e.g. inkjet printing). There have been extensive researches on micro/nano additive manufacturing methods employing laser (or optical) and ion/electron beams. Many of these processes utilize specially designed photosensitive materials consisting of additives and effective components. Due to the presence of additive (such as polymer and binders), the effective components are relatively low resulting in high threshold for device operation. In order to direct print functional devices at low cost, there has been extensive research on laser processing of pre-synthesized nanomaterials for non-polymer functional device manufacturing. Pre-synthesized nanocrystals can have better control in the stoichiometry and crystallinity. In addition, pre-synthesis process enjoys the flexibility in material choice since a variety of materials can be synthesized. Femtosecond laser assembly and deposition of nanomaterials can be a feasible 3D micro/nano additive manufacturing approach, although mechanisms leading to assembly and deposition have not been fully understood. In this paper, we propose a mechanism for 2D and 3D deposition of nanocrystals by laser excitation with moderate peak intensities(1011-1012 W/cm2). It is postulated that laser induced charging is responsible for the deposition. The scheme paves the way for laser selective electrophoretic deposition as a micro/nanoscale additive manufacturing approach

    Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities

    Get PDF
    Microbial communities often perform important functions that depend on inter-species interactions. To improve community function via artificial selection, one can repeatedly grow many communities to allow mutations to arise, and “reproduce” the highest-functioning communities by partitioning each into multiple offspring communities for the next cycle. Since improvement is often unimpressive in experiments, we study how to design effective selection strategies in silico. Specifically, we simulate community selection to improve a function that requires two species. With a “community function landscape”, we visualize how community function depends on species and genotype compositions. Due to ecological interactions that promote species coexistence, the evolutionary trajectory of communities is restricted to a path on the landscape. This restriction can generate counter-intuitive evolutionary dynamics, prevent the attainment of maximal function, and importantly, hinder selection by trapping communities in locations of low community function heritability. We devise experimentally-implementable manipulations to shift the path to higher heritability, which speeds up community function improvement even when landscapes are high dimensional or unknown. Video walkthroughs: https://go.nature.com/3GWwS6j; https://online.kitp.ucsb.edu/online/ecoevo21/shou2/

    Spontaneous electro-weak symmetry breaking and cold dark matter

    Full text link
    In the standard model, the weak gauge bosons and fermions obtain mass after spontaneous electro-weak symmetry breaking, which is realized through one fundamental scalar field, namely Higgs field. In this paper we study the simplest scalar cold dark matter model in which the scalar cold dark matter also obtains mass through interaction with the weak-doublet Higgs field, the same way as those of weak gauge bosons and fermions. Our study shows that the correct cold dark matter relic abundance within 3σ3\sigma uncertainty (0.093<Ωdmh2<0.129 0.093 < \Omega_{dm} h^2 < 0.129 ) and experimentally allowed Higgs boson mass (114.4mh208114.4 \le m_h \le 208 GeV) constrain the scalar dark matter mass within 48mS7848 \le m_S \le 78 GeV. This result is in excellent agreement with that of W. de Boer et.al. (5010050 \sim 100 GeV). Such kind of dark matter annihilation can account for the observed gamma rays excess (10σ10\sigma) at EGRET for energies above 1 GeV in comparison with the expectations from conventional Galactic models. We also investigate other phenomenological consequences of this model. For example, the Higgs boson decays dominantly into scalar cold dark matter if its mass lies within 486448 \sim 64 GeV.Comment: 4 Revtex4 pages, refs adde

    Local density of states of a d-wave superconductor with inhomogeneous antiferromagnetic correlations

    Full text link
    The tunneling spectrum of an inhomogeneously doped extended Hubbard model is calculated at the mean field level. Self-consistent solutions admit both superconducting and antiferromagnetic order, which coexist inhomogeneously because of spatial randomness in the doping. The calculations find that, as a function of doping, there is a continuous cross over from a disordered ``pinned smectic'' state to a relatively homogeneous d-wave state with pockets of antiferromagnetic order. The density of states has a robust d-wave gap, and increasing antiferromagnetic correlations lead to a suppression of the coherence peaks. The spectra of isolated nanoscale antiferromagnetic domains are studied in detail, and are found to be very different from those of macroscopic antiferromagnets. Although no single set of model parameters reproduces all details of the experimental spectrum in BSCCO, many features, notably the collapse of the coherence peaks and the occurence of a low-energy shoulder in the local spectrum, occur naturally in these calculations.Comment: 9 pages, 5 figure

    Neutrino Constraints on Inelastic Dark Matter after CDMS II

    Full text link
    We discuss the neutrino constraints from solar and terrestrial dark matter (DM) annihilations in the inelastic dark matter (iDM) scenario after the recent CDMS II results. To reconcile the DAMA/LIBRA data with constraints from all other direct experiments, the iDM needs to be light (mχ<100m_\chi < 100 GeV) and have a large DM-nucleon cross section (σn\sigma_n \sim 104^{-4} pb in the spin-independent (SI) scattering and σn\sigma_n \sim 10 pb in the spin-dependent (SD) scattering). The dominant contribution to the iDM capture in the Sun is from scattering off Fe/Al in the SI/SD case. Current bounds from Super-Kamiokande exclude the hard DM annihilation channels, such as W+WW^+W^-, ZZZZ, ttˉt\bar{t} and τ+τ\tau^+ \tau^-. For soft channels such as bbˉb\bar{b} and ccˉc \bar{c}, the limits are loose, but could be tested or further constrained by future IceCube plus DeepCore. For neutrino constraints from the DM annihilation in the Earth, due to the weaker gravitational effect of the Earth and inelastic capture condition, the constraint exists only for small mass splitting δ<\delta < 40 keV and mχ(10,50)m_\chi \sim (10, 50) GeV even in the τ+τ\tau^+ \tau^- channel.Comment: 11 pages, 8 figure
    corecore