1,649 research outputs found

    31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State

    Full text link
    The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation) measurements on the filled skutterudite system SmFe4P12 have been carried out. The temperature T dependence of the 31P-NMR spectra indicates the existence of the crystalline electric field effect splitting of the Sm3+$ (J = 5/2) multiplet into a ground state and an excited state of about 70 K. The spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T dependence deviated from the Korringa behavior below 7 K, which is independent of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher fields. The behavior is explained as 1/T1is determined by ferromagnetic fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons. The muSR measurements in zero field show the appearance of a static internal field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006

    XANES study of rare-earth valency in LRu4P12 (L = Ce and Pr)

    Full text link
    Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES spectrum suggests that Ce is mainly trivalent, but the 4f state strongly hybridizes with ligand orbitals. The band gap of CeRu4P12 seems to be formed by strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does not originate from Pr valence fluctuation.Comment: 4 page

    Shock compression and isentropic release of granite

    Get PDF
    New equation of state data for a weathered granite shocked to about 125 GPa are reported and combined with the Westerly granite data of McQueen, Marsh & Fritz (1967). The shock velocity (U_s)-particle velocity (U_p) relations can be fitted with two linear regressions: U_s= 4.40 + 0.6U_p for a range of U_p up to about 2 km s^(-1) and U_s= 2.66 + 1.49U_p for a range of about 2 to 5 km s^(-1). The third-order Birch-Murnaghan equation of state parameters are K_(os) = 51-57 GPa and K'_(os) = 1.4-1.8 for the low-pressure regime and K_(os) = 251 ± 30 GPa and an assumed K'_(os) = 4 for the high-pressure regime. Compressive waveforms in dry and water-saturated granite were measured at 10-15 GPa using the VISAR technique. The measured wave profiles were successfully modelled using a Maxwellian stress-relaxation material model. Water-saturated granite is characterized by a ~25 per cent lower yield strength and a ~75 per cent longer material relaxation time than dry granite

    Low-lying optical phonon modes in the filled skutterudite CeRu4Sb12

    Full text link
    The phonon dynamics of filled skutterudite CeRu4Sb12 have been studied at room temperature by inelastic neutron scattering. Optical phonons associated with a large vibration of Ce atoms are observed at a relatively low energy of E = 6 meV, and show anticrossing behavior with acoustic phonons. We propose that the origin of the low lattice thermal conductivity in filled skutterudites can be attributed to intensive Umklapp scattering originating from low-lying optical phonons. By an analysis based on a Born-von Karman force model, the longitudinal force constants of the nearest Ce-Sb and Ce-Ru pairs are estimated to be 0.025 mdyn/A, while that of the nearest Ru-Sb pair is estimated to be 1.4 mdyn/A, indicating that the Ce atoms are bound very weakly to the surrounding rigid RuSb6-octahedron cages.Comment: 4pages, 5 figures, J. Phys. Soc. Jpn. (2006) in pres

    Fermi surface of the filled-skutterudite superconductor LaRu4P12: A clue to the origin of the metal-insulator transition in PrRu4P12

    Full text link
    We report the de Haas-van Alphen (dHvA) effect and magnetoresistance in the filled-skutterudite superconductor LaRu4P12, which is a reference material of PrRu4P12 that exhibits a metal-insulator (M-I) transition at T_MI~60 K. The observed dHvA branches for the main Fermi surface (FS) are well explained by the band-structure calculation, using the full potential linearized augmented-plane-wave method with the local-density approximation, suggesting a nesting instability with q =(1,0,0) in the main multiply connected FS as expected also in PrRu4P12. Observed cyclotron effective masses of (2.6-11.8)m_0, which are roughly twice the calculated masses, indicate the large mass enhancement even in the La-skutterudites. Comparing the FS between LaRu4P12 and PrRu4P12, an essential role of c-f hybridization cooperating with the FS nesting in driving the the M-I transition in PrRu4P12 has been clarified.Comment: Appeared in Physical Review

    Spin fluctuations in CuGeO3_3 probed by light scattering

    Full text link
    We have measured temperature dependence of low-frequency Raman spectra in CuGeO3_3, and have observed the quasi-elastic scattering in the (c,c)(c,c) polarization above the spin-Peierls transition temperature. We attribute it to the fluctuations of energy density in the spin system. The magnetic specific heat and an inverse of the magnetic correlation length can be derived from the quasi-elastic scattering. The inverse of the magnetic correlation length is proportional to (T−TSP)1/2(T-T_{SP})^{1/2} at high temperatures. We compare the specific heat with a competing-JJ model. This model cannot explain quantitatively both the specific heat and the magnetic susceptibility with the same parameters. The origin of this discrepancy is discussed.Comment: 17 pages, REVTeX, 5 Postscript figures; in press in PR

    Heavy Fermion Behavior, Crystalline Electric Field Effects, and Weak Ferromagnetism in SmOs_{4}Sb_{12}

    Full text link
    The filled skutterudite compound SmOs_{4}Sb_{12} was prepared in single crystal form and characterized. The SmOs_{4}Sb_{12} crystals have the LaFe_{4}P_{12}-type structure with lattice parameter a = 9.3085 Angstroms. Specific heat measurements indicate a large electronic specific heat coefficient of ~880 mJ/mol K^{2}, from which an enhanced effective mass m^{*} ~ 170 m_{e} is estimated. The specific heat data also suggest crystalline electric field (CEF) splitting of the Sm^{3+} J = 5/2 multiplet into a Gamma_{7} doublet ground state and a Gamma_{8} quartet excited state separated by 37 K. Electrical resistivity rho(T) measurements reveal a decrease in rho(T) below ~50 K that is consistent with CEF splitting of ~33 K between a Gamma_(7) doublet ground state and Gamma_{8} quartet excited state. Specific heat and magnetic susceptibility measurements display a possible weak ferromagnetic transition at ~2.6 K, which could be an intrinsic property of SmOs_4Sb_{12} or possibly due to an unknown impurity phase.Comment: 24 pages, 11 Postscript figures, to be published in Physical Review

    The microscopic spin-phonon coupling constants in CuGeO_3

    Full text link
    Using RPA results, mean field theory, and refined data for the polarization vectors we determine the coupling constants of the four Peierls-active phonon modes to the spin chains of CuGeO_3. We then derive the values of the coupling of the spin system to the linear ionic displacements, the bond lengths and the angles between bonds. Our values are consistent with microscopic theories and various experimental results. We discuss the applicability of static approaches to the spin-phonon coupling. The c-axis anomaly of the thermal expansion is explained. We give the values of the coupling constants in an effective one-dimensional Hamiltonian.Comment: 11 pages, two figures, 13 tables, PRB 59 (in press

    Exotic Heavy Fermion State in the Filled Skutterudite PrFe4_4P12_{12} Uncovered by the de Haas-van Alphen Effect

    Full text link
    We report the de Haas-van Alphen (dHvA) experiment on the filled skutterudite PrFe4_4P12_{12} exhibiting apparent Kondo-like behaviors in the transport and thermal properties. We have found enormously enhanced cyclotron effective mass mc∗=81m0m^{\rm \ast}_{\rm c}=81 m_{\rm 0} in the high field phase (HFP), which indicates that PrFe4_4P12_{12} is the first Pr-compound in which really heavy mass has been unambiguously confirmed. Also in the low field non-magnetic ordered phase (LOP), we observed the dHvA branch with mc∗=10m0m^{\rm \ast}_{\rm c}=10 m_{0} that is quite heavy taking into account its small Fermi surface volume (0.15% of the Brillouin zone size). The insensitivity of mass in LOP against the magnetic field suggests that the quadrupolar interaction plays a main role both in the mass renormalization and the LOP formation.Comment: 5 pages, 5 figures, Phys. Rev. B (01 October 2002) in pres
    • …
    corecore