24 research outputs found

    Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generating income for the rural poor

    No full text
    Plants provide medicine and pest control resources for millions of poor people world-wide. Widespread harvesting of medicinal and pesticidal plants puts pressure on natural populations, thus severely compromising their contribution to the income and well-being of traders and consumers. The development of in vitro propagation techniques appropriate for developing countries will provide a robust platform for effective propagation and cultivation of endangered plants. This review focuses on advances in the application of phytochemical and in vitro tools to identify and rapidly propagate medicinal and pesticidal plants. Problems of over-harvesting can be alleviated and ex situ cultivation in agroforestry systems can be facilitated through improving seed germination, in vitro cloning and the use of mycorrhizal fungi. We also present a case for effective use of phytochemical analyses for the accurate identification of elite materials from wild stands and validation of the desired quality in order to counter loss of efficacy in the long run through selection, propagation or ex situ management in agroforestry systems. Future prospects are discussed in the context of medicinal activity screening, sustainable propagation, on-farm planting, management and utilization

    The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality

    No full text
    The inselbergs of the Central Highlands of Madagascar are one of many ‘micro-hotspots’ of biodiversity on the island, particularly for Orchidaceae. In this region are several genera that have a large number of endemic species that are in serious decline or edging towards extinction. Studies relating to diversity of orchids and their fungal partners (both mycorrhizal and non-mycorrhizal root associates) deserve more attention, as climate change and human induced decline in resilience of species in the wild is at an all-time high. Identification of mycorrhizal fungi (MF) via conventional seed baited-protocorms has limitations for large scale studies and its application for time-bound conservation projects. The paper describes the value of understanding fungal diversity in the roots of orchids at different stages of maturity. The first part of the study was a preliminary investigation mainly to identify culturable Rhizoctonia endophytes, and the second part looked at all life forms of available taxa together with associated soil characteristics. We isolated and identified 19 putative MF from 18 of the 50 taxa spread over an area of 250 sq. km, covering three life forms, growth phases of the orchid taxa, and habitat types. In the rest of the taxa, we were unable to detect any putative MF, but had varying numbers of non-mycorrhizal endophytes. We also found that diversity of putative MF was higher in plants from soils with the lowest P levels recorded. Putative mycorrhizal OTUs were predominantly from the Tulasnella lineage, followed by Ceratobasidium and Serendipita. Within a small subset of samples, a difference in colonised endophytes depending on the collection season was observed. In vitro germination studies using 10 OTUs of mycorrhizal fungi in 14 orchid species showed mostly generalist associations. When orchid seed and fungal sources were studied irrespective of habitat, life form, and distance from each other (orchid seed and fungal source), compatibility for symbiotic seed germination was observed in most cases. Issues with the identification of compatible MF and symbiotic system of seed germination are discussed

    Techniques for the collection, transportation, and isolation of orchid endophytes from afar: a case study from Madagascar

    No full text
    Abstract Background Tropical orchids need more study with respect to their mycorrhizal associations. For researchers in distant countries who aspire to study these orchids augmenting their conservation, the great distances involved, coupled with limited funds, pose formidable challenges. These challenges are sometimes exacerbated by political unrest, delays in securing permits, unexpected hardships, and the risk that the biological samples collected (e.g., roots harboring mycorrhizal fungi) will not survive long-distance transport. Results We describe a protocol for the collection and transport of root samples from Madagascar orchids to labs in the United Kingdom (Kew) and the United States (Illinois) where Rhizoctonia-like fungi were subsequently isolated. Three separate trips were made spanning 4 years (2012–2015), with emphasis on the collection of roots from epiphytic, lithophytic, and terrestrial orchids inhabiting the Itremo Massif of the Central Highlands. Collectively, the trips to Madagascar resulted in the isolation of all major groups of Rhizoctonia-like fungi (Ceratobasidium, Tulasnella, Sebacina) from all three orchid growth forms (terrestrials, epiphytes and lithophytes). Sampling of terrestrial and epiphytes during the rainy season (January) yielded best results. Conclusions Our study demonstrates that peloton-forming fungi in root samples can retain viability up to 3 weeks after collection

    The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality

    No full text
    The inselbergs of the Central Highlands of Madagascar are one of many ‘micro-hotspots’ of biodiversity on the island, particularly for Orchidaceae. In this region are several genera that have a large number of endemic species that are in serious decline or edging towards extinction. Studies relating to diversity of orchids and their fungal partners (both mycorrhizal and non-mycorrhizal root associates) deserve more attention, as climate change and human induced decline in resilience of species in the wild is at an all-time high. Identification of mycorrhizal fungi (MF) via conventional seed baited-protocorms has limitations for large scale studies and its application for time-bound conservation projects. The paper describes the value of understanding fungal diversity in the roots of orchids at different stages of maturity. The first part of the study was a preliminary investigation mainly to identify culturable Rhizoctonia endophytes, and the second part looked at all life forms of available taxa together with associated soil characteristics. We isolated and identified 19 putative MF from 18 of the 50 taxa spread over an area of 250 sq. km, covering three life forms, growth phases of the orchid taxa, and habitat types. In the rest of the taxa, we were unable to detect any putative MF, but had varying numbers of non-mycorrhizal endophytes. We also found that diversity of putative MF was higher in plants from soils with the lowest P levels recorded. Putative mycorrhizal OTUs were predominantly from the Tulasnella lineage, followed by Ceratobasidium and Serendipita. Within a small subset of samples, a difference in colonised endophytes depending on the collection season was observed. In vitro germination studies using 10 OTUs of mycorrhizal fungi in 14 orchid species showed mostly generalist associations. When orchid seed and fungal sources were studied irrespective of habitat, life form, and distance from each other (orchid seed and fungal source), compatibility for symbiotic seed germination was observed in most cases. Issues with the identification of compatible MF and symbiotic system of seed germination are discussed
    corecore