107 research outputs found

    Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep

    Get PDF
    In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species

    Albumin and mammalian cell culture: implications for biotechnology applications

    Get PDF
    Albumin has a long historical involvement in design of media for the successful culture of mammalian cells, in both the research and commercial fields. The potential application of albumins, bovine or human serum albumin, for cell culture is a by-product of the physico-chemical, biochemical and cell-specific properties of the molecule. In this review an analysis of these features of albumin leads to a consideration of the extracellular and intracellular actions of the molecule, and importantly the role of its interactions with numerous ligands or bioactive factors that influence the growth of cells in culture: these include hormones, growth factors, lipids, amino acids, metal ions, reactive oxygen and nitrogen species to name a few. The interaction of albumin with the cell in relation to these co-factors has a potential impact on metabolic and biosynthetic activity, cell proliferation and survival. Application of this knowledge to improve the performance in manufacturing biotechnology and in the emerging uses of cell culture for tissue engineering and stem cell derived therapies is an important prospect

    Usporedba djelovanja blokatora kalcijevih kanala, blokatora autonomnoga živčanog sustava te inhibitora slobodnih radikala na hiposekreciju inzulin iz izolirnih langerhansovih otočića štakora uzrokovanu diazinonom

    Get PDF
    Hyperglycaemia has been observed with exposure to organophosphate insecticides. This study was designed to compare the effects of calcium channel blockers, alpha-adrenergic, beta-adrenergic, and muscarinic receptor blockers, and of free radical scavengers on insulin secretion from diazinon-treated islets of Langerhans isolated from the pancreas of rats using standard collagenase digestion, separation by centrifugation, and hand-picking technique. The islets were then cultured in an incubator at 37 °C and 5 % CO2. In each experimental set 1 mL of 8 mmol L-1 glucose plus 125 µg mL-1 or 625 µg mL-1 of diazinon were added, except for the control group, which received 8 mmol L-1 glucose alone. The cultures were then treated with one of the following: 30 µmol L-1 atropine, 100 µmol L-1 ACh + 10 µmol L-1 neostigmine, 0.1 µmol L-1 propranolol, 2 µmol L-1 nifedipine, 50 µmol L-1 phenoxybenzamine, or 10 µmol L-1 alphatocopherol. In all experiments, diazinon significantly reduced glucose-stimulated insulin secretion at both doses, showing no dose dependency, as the average inhibition for the lower dose was 62.20 % and for the higher dose 64.38 %. Acetylcholine and alpha-tocopherol restored, whereas atropine potentiated diazinoninduced hyposecretion of insulin. Alpha-, beta- and calcium channel blockers did not change diazinoninduced effects. These findings suggest that diazinon affects insulin secretion mainly by disturbing the balance between free radicals and antioxidants in the islets of Langerhans and by inducing toxic stress.U osoba izloženih organofosfatnim insekticidima zamijećen je nastanak hiperglikemije. Svrha je ovo istraživanja bila usporediti djelovanje blokatora kalcijevih kanala, alfa i beta-adrenergičkih i muskarinskih receptora te inhibicije slobodnih radikala na lučenje inzulina iz Langerhansovih otočića izoliranih iz štakora tretiranih diazinonom. Otočići su izolirani iz gušterače štakora s pomoću standardnog postupka digestije kolagenazom, odvajanja centrifugiranjem i metodom ručnog probira (engl. hand-picking) te su kultivirani u inkubatoru pri 37 °C i 5 % CO2. Pokusne su kulture inkubirane s 1 mL glukoze u koncentraciji od 8 mmol L-1 te diazinonom u dozi od 125 μg mL-1, odnosno 625 μg mL-1. U kontrolu je dodana samo glukoza u koncentraciji od 8 mmol L-1. Nakon toga je u kulture dodan jedan od sljedećih agenasa: 30 µmol L-1 atropin, 100 µmol L-1 ACh + 10 µmol L-1 neostigmin, 0,1 µmol L-1 propranolol, 2 µmol L-1 nifedipin, 50 µmol L-1 fenoksibenzamin, odnosno 10 µmol L-1 alfa-tokoferol. U svim je pokusima diazinon značajno smanjio lučenje inzulina, s time da je doza od 125 μg mL-1 dovela do 62,2 %-tne inhibicije, a doza od 625 μg mL-1 do 64,38 %-tne inhibicije lučenja inzulina, što upućuje na djelovanje neovisno o dozi. Acetilkolin i alfa-tokoferol su ponovno potaknuli lučenje inzulina, za razliku od atropina koji ga je dodatno smanjio. Primjena blokatora alfa i beta-adrenergičkih receptora te blokatora kalcijevih kanala nije utjecala na djelovanje diazinona. Autori zaključuju da diazinon utječe na lučenje inzulina ponajviše narušavanjem ravnoteže između slobodnih radikala i antioksidansa u Langerhansovim otočićima te dovodi do toksičnoga stresa

    Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Get PDF
    corecore