11,300 research outputs found

    The noncommutative Kubo Formula: Applications to Transport in Disordered Topological Insulators with and without Magnetic Fields

    Full text link
    The non-commutative theory of charge transport in mesoscopic aperiodic systems under magnetic fields, developed by Bellissard, Shulz-Baldes and collaborators in the 90's, is complemented with a practical numerical implementation. The scheme, which is developed within a C∗C^*-algebraic framework, enable efficient evaluations of the non-commutative Kubo formula, with errors that vanish exponentially fast in the thermodynamic limit. Applications to a model of a 2-dimensional Quantum spin-Hall insulator are given. The conductivity tensor is mapped as function of Fermi level, disorder strength and temperature and the phase diagram in the plane of Fermi level and disorder strength is quantitatively derived from the transport simulations. Simulations at finite magnetic field strength are also presented.Comment: 10 figure

    Gravitational Trapping Near Domain Walls and Stable Solitons

    Full text link
    In this work, the behavior of test particles near a domain wall of a stable false vacuum bubble is studied. It is shown that matter is naturally trapped in the vicinity of a static domain wall, and also, that there is a discontinuity in the test particle's velocity when crossing the domain wall. The latter is unexpected as it stands in contrast to Newtonian theory, where infinite forces are not allowed. The weak field limit is defined in order to show that there is no conflict with the non-relativistic behavior of gravitational fields and particle motions under these conditions.Comment: 8 pages, 1 figure, problem is reanalyzed using a continuous coordinate syste

    Fe-doping-induced evolution of charge-orbital ordering in a bicritical-state manganite

    Full text link
    Impurity effects on the stability of a ferromagnetic metallic state in a bicritical-state manganite, (La0.7Pr0.3)0.65Ca0.35MnO3, on the verge of metal-insulator transition have been investigated by substituting a variety of transition-metal atoms for Mn ones. Among them, Fe doping exhibits the exceptional ability to dramatically decrease the ferromagnetic transition temperature. Systematic studies on the magnetotransport properties and x-ray diffraction for the Fe-doped crystals have revealed that charge-orbital ordering evolves down to low temperatures, which strongly suppresses the ferromagnetic metallic state. The observed glassy magnetic and transport properties as well as diffuse phase transition can be attributed to the phase-separated state where short-range charge-orbital-ordered clusters are embedded in the ferromagnetic metallic matrix. Such a behavior in the Fe-doped manganites form a marked contrast to the Cr-doping effects on charge-orbital-ordered manganites known as impurity-induced collapse of charge-orbital ordering.Comment: 8 pages, 7 figure

    Identification problems of muon and electron events in the Super-Kamiokande detector

    Get PDF
    In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of the Super Kamiokande group for the distinction between muon-like and electronlike events observed in the water Cerenkov detector have initially assumed a misidentification probability of less than 1 % and later 2 % for the sub-GeV range. In the multi-GeV range, they compared only the observed behaviors of ring patterns of muon and electron events, and claimed a 3 % mis-identification. However, the expressions and the calculation method do not include the fluctuation properties due to the stochastic nature of the processes which determine the expected number of photoelectrons (p.e.) produced by muons and electrons. Our full Monte Carlo (MC) simulations including the fluctuations of photoelectron production show that the total mis-identification rate for electrons and muons should be larger than or equal to 20 % for sub-GeV region. Even in the multi-GeV region we expect a mis-identification rate of several % based on our MC simulations taking into account the ring patterns. The mis-identified events are mostly of muonic origin.Comment: 17 pages, 12 figure

    Magnetic Susceptibility of Multiorbital Systems

    Full text link
    Effects of orbital degeneracy on magnetic susceptibility in paramagnetic phases are investigated within a mean-field theory. Under certain crystalline electric fields, the magnetic moment consists of two independent moments, e.g., spin and orbital moments. In such a case, the magnetic susceptibility is given by the sum of two different Curie-Weiss relations, leading to deviation from the Curie-Weiss law. Such behavior may be observed in d- and f-electron systems with t_{2g} and Gamma_8 ground states, respectively. As a potential application of our theory, we attempt to explain the difference in the temperature dependence of magnetic susceptibilities of UO_2 and NpO_2.Comment: 4 pages, 3 figure

    Effective one-band electron-phonon Hamiltonian for nickel perovskites

    Full text link
    Inspired by recent experiments on the Sr-doped nickelates, La2−xSrxNiO4La_{2-x}Sr_xNiO_4, we propose a minimal microscopic model capable to describe the variety of the observed quasi-static charge/lattice modulations and the resulting magnetic and electronic-transport anomalies. Analyzing the motion of low-spin (s=1/2) holes in a high-spin (S=1) background as well as their their coupling to the in-plane oxygen phonon modes, we construct a sort of generalized Holstein t-J Hamiltonian for the NiO2NiO_2 planes, which contains besides the rather complex ``composite-hole'' hopping part non-local spin-spin and hole-phonon interaction terms.Comment: 12 pages, LaTeX, submitted to Phys. Rev.

    Perturbation theorems for Hele-Shaw flows and their applications

    Full text link
    In this work, we give a perturbation theorem for strong polynomial solutions to the zero surface tension Hele-Shaw equation driven by injection or suction, so called the Polubarinova-Galin equation. This theorem enables us to explore properties of solutions with initial functions close to but are not polynomial. Applications of this theorem are given in the suction or injection case. In the former case, we show that if the initial domain is close to a disk, most of fluid will be sucked before the strong solution blows up. In the later case, we obtain precise large-time rescaling behaviors for large data to Hele-Shaw flows in terms of invariant Richardson complex moments. This rescaling behavior result generalizes a recent result regarding large-time rescaling behavior for small data in terms of moments. As a byproduct of a theorem in this paper, a short proof of existence and uniqueness of strong solutions to the Polubarinova-Galin equation is given.Comment: 25 page

    Conductance Fluctuations in Disordered Wires with Perfectly Conducting Channels

    Full text link
    We study conductance fluctuations in disordered quantum wires with unitary symmetry focusing on the case in which the number of conducting channels in one propagating direction is not equal to that in the opposite direction. We consider disordered wires with N+mN+m left-moving channels and NN right-moving channels. In this case, mm left-moving channels become perfectly conducting, and the dimensionless conductance gg for the left-moving channels behaves as g→mg \to m in the long-wire limit. We obtain the variance of gg in the diffusive regime by using the Dorokhov-Mello-Pereyra-Kumar equation for transmission eigenvalues. It is shown that the universality of conductance fluctuations breaks down for m≠0m \neq 0 unless NN is very large.Comment: 6 pages, 2 figure

    Single-top-squark production via R-parity-violating supersymmetric couplings in hadron collisions

    Get PDF
    Single-top-squark production via q q' -> \bar{\tilde{t_1}} probes R-parity-violating extensions of the minimal supersymmetric standard model though the \lambda''_{3ij} couplings. For masses in the range 180-325 GeV, and \lambda''_{3ij} > 0.02-0.06, we show that discovery of the top squark is possible with 2 fb^{-1} of integrated luminosity at run II of the Fermilab Tevatron. The bound on \lambda''_{3ij}$ can be reduced by up to an order of magnitude with existing data from run I, and by two orders of magnitude at run II if the top squark is not found.Comment: To appear in Phys. Rev. Lett., minor changes, 4 pages, RevTeX, 5 eps fig
    • …
    corecore