83 research outputs found

    A possible influence of the Great White Spot on Saturn kilometric radiation periodicity

    Get PDF
    The periodicity of Saturn kilometric radiation (SKR) varies with time, and its two periods during the first 5 years of the Cassini mission have been attributed to SKR from the northern and southern hemisphere. After Saturn equinox in August 2009, there were long intervals of time (March 2010 to February 2011 and September 2011 to June 2012) with similar northern and southern SKR periods and locked SKR phases. However, from March to August 2011 the SKR periods were split up again, and the phases were unlocked. In this time interval, the southern SKR period slowed down by ~ 0.5% on average, and there was a large jump back to a faster period in August 2011. The northern SKR period speeded up and coalesced again with the southern period in September 2011. We argue that this unusual behavior could be related to the so-called Great White Spot (GWS), a giant thunderstorm that raged in Saturn's atmosphere around that time. For several months in 2011, the visible head of the GWS had the same period of ~ 10.69 h as the main southern SKR modulation signal. The GWS was most likely a source of intense gravity waves that may have caused a global change in Saturn's thermospheric winds via energy and momentum deposition. This would support the theory that Saturn's magnetospheric periodicities are driven by the upper atmosphere. Since the GWS with simultaneous SKR periodicity measurements have only been made once, it is difficult to prove a physical connection between these two phenomena, but we provide plausible mechanisms by which the GWS might modify the SKR periods

    Electron Density Distributions in Saturn's Ionosphere

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere

    High performing hospitals: a qualitative systematic review of associated factors and practical strategies for improvement.

    Get PDF
    BACKGROUND: High performing hospitals attain excellence across multiple measures of performance and multiple departments. Studying high performing hospitals can be valuable if factors associated with high performance can be identified and applied. Factors leading to high performance are complex and an exclusive quantitative approach may fail to identify richly descriptive or relevant contextual factors. The objective of this study was to undertake a systematic review of qualitative literature to identify methods used to identify high performing hospitals, the factors associated with high performers, and practical strategies for improvement. METHODS: Methods used to collect and summarise the evidence contributing to this review followed the 'enhancing transparency in reporting the synthesis of qualitative research' protocol. Peer reviewed studies were identified through Medline, Embase and Cinahl (Jan 2000-Feb 2014) using specified key words, subject terms, and medical subject headings. Eligible studies required the use of a quantitative method to identify high performing hospitals, and qualitative methods or tools to identify factors associated with high performing hospitals or hospital departments. Title, abstract, and full text screening was undertaken by four reviewers, and inter-rater reliability statistics were calculated for each review phase. Risk of bias was assessed. Following data extraction, thematic syntheses identified contextual factors important for explaining success. Practical strategies for achieving high performance were then mapped against the identified themes. RESULTS: A total of 19 studies from a possible 11,428 were included in the review. A range of process, output, outcome and other indicators were used to identify high performing hospitals. Seven themes representing factors associated with high performance (and 25 sub-themes) emerged from the thematic syntheses: positive organisational culture, senior management support, effective performance monitoring, building and maintaining a proficient workforce, effective leaders across the organisation, expertise-driven practice, and interdisciplinary teamwork. Fifty six practical strategies for achieving high performance were catalogued. CONCLUSIONS: This review provides insights into methods used to identify high performing hospitals, and yields ideas about the factors important for success. It highlights the need to advance approaches for understanding what constitutes high performance and how to harness factors associated with high performance
    corecore