456 research outputs found

    Properties of heavy quarkonia and B_c mesons in the relativistic quark model

    Get PDF
    The mass spectra and electromagnetic decay rates of charmonium, bottomonium and B_c mesons are comprehensively investigated in the relativistic quark model. The presence of only heavy quarks allows the expansion in powers of their velocities. All relativistic corrections of order v^2/c^2, including retardation effects and one-loop radiative corrections, are systematically taken into account in the computations of the mass spectra. The obtained wave functions are used for the calculation of radiative magnetic dipole (M1) and electric dipole (E1) transitions. It is found that relativistic effects play a substantial role. Their account and the proper choice of the Lorentz structure of the quark-antiquark interaction in a meson is crucial for bringing theoretical predictions in accord with experimental data. A detailed comparison of the calculated decay rates and branching fractions with available experimental data for radiative decays of charmonium and bottomonium is presented. The possibilities to observe the currently missing spin-singlet S and P states as well as D states in bottomonium are discussed. The results for B_c masses and decays are compared with other quark model predictions.Comment: 31 pages, 2 figures, minor correction

    Quark-antiquark potential with retardation and radiative contributions and the heavy quarkonium mass spectra

    Get PDF
    The charmonium and bottomonium mass spectra are calculated with the systematic account of all relativistic corrections of order v^2/c^2 and the one-loop radiative corrections. Special attention is paid to the contribution of the retardation effects to the spin-independent part of the quark-antiquark potential, and a general approach to accounting for retardation effects in the long-range (confining) part of the potential is presented. A good fit to available experimental data on the mass spectra is obtained.Comment: 20 pages, revtex, 2 Postscript figure

    Tuning the Non-local Spin-Spin Interaction between Quantum Dots with a Magnetic Field

    Full text link
    We describe a device where the non-local spin-spin interaction between two quantum dots can be turned on and off and even changed sign with a very small magnetic field. The setup consists of two quantum dots at the edge of two two-dimensional electron gases (2DEGs). The quantum dots' spins are coupled through a RKKY-like interaction mediated by the electrons in the 2DEGs. A small magnetic field perpendicular to the plane of the 2DEG is used as a tuning parameter. When the cyclotron radius is commensurate with the interdot distance, the spin-spin interaction is amplified by a few orders of magnitude. The sign of the interaction is controlled by finely tuning the magnetic field. Our setup allows for several dots to be coupled in a linear arrangement and it is not restricted to nearest-neighbors interaction.Comment: 4 pages, 5 figures. Published versio

    LCG MCDB -- a Knowledgebase of Monte Carlo Simulated Events

    Get PDF
    In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project

    Rare radiative B decays to orbitally excited K mesons

    Get PDF
    The exclusive rare radiative B meson decays to orbitally excited axial-vector mesons K_1^*(1270), K_1(1400) and to the tensor meson K_2^*(1430) are investigated in the framework of the relativistic quark model based on the quasipotential approach in quantum field theory. These decays are considered without employing the heavy quark expansion for the s quark. Instead the s quark is treated to be light and the expansion in inverse powers of the large recoil momentum of the final K^{**} meson is used to simplify calculations. It is found that the ratio of the branching fractions of rare radiative B decays to axial vector K^*_1(1270) and K_1(1400) mesons is significantly influenced by relativistic effects. The obtained results for B decays to the tensor meson K_2^*(1430) agree with recent experimental data from CLEO.Comment: 17 pages, revte

    Collective modes for an array of magnetic dots in the vortex state

    Full text link
    The dispersion relations for collective magnon modes for square-planar arrays of vortex-state magnetic dots, having closure magnetic flux are calculated. The array dots have no direct contact between each other, and the sole source of their interaction is the magnetic dipolar interaction. The magnon formalism using Bose operators along with translational symmetry of the lattice, with the knowledge of mode structure for the isolated dot, allows the diagonalization of the system Hamiltonian giving the dispersion relation. Arrays of vortex-state dots show a large variety of collective mode properties, such as positive or negative dispersion for different modes. For their description, not only dipolar interaction of effective magnetic dipoles, but non-dipolar terms common to higher multipole interaction in classical electrodynamics can be important. The dispersion relation is shown to be non-analytic as the value of the wavevector approaches zero for all dipolar active modes of the single dot. For vortex-state dots the interdot interaction is not weak, because, the dynamical part (in contrast to the static magnetization of the vortex state) dot does not contain the small parameter, the ratio of vortex core size to the dot radius. This interaction can lead to qualitative effects like the formation of modes of angular standing waves instead of modes with definite azimuthal number known for the insolated vortex state dot

    Exclusive semileptonic B decays to radially excited D mesons

    Full text link
    Exclusive semileptonic B decays to radially excited charmed mesons are investigated at the first order of the heavy quark expansion. The arising leading and subleading Isgur-Wise functions are calculated in the framework of the relativistic quark model. It is found that the 1/m_Q corrections play an important role and substantially modify results. An interesting interplay between different corrections is found. As a result the branching ratio for the B-> D'e\nu decay is essentially increased by 1/m_Q corrections, while the one for B-> D*'e\nu is only slightly influenced by them.Comment: 19 pages, revtex, 6 figures, uses rotating.st

    Supersymmetry, quark confinement and the harmonic oscillator

    Full text link
    We study some quantum systems described by noncanonical commutation relations formally expressed as [q,p]=ihbar(I + chi H), where H is the associated (harmonic oscillator-like) Hamiltonian of the system, and chi is a Hermitian (constant) operator, i.e. [H,chi]=0 . In passing, we also consider a simple (chi=0 canonical) model, in the framework of a relativistic Klein-Gordon-like wave equation.Comment: To be published in Journal of Physics A: Mathematical and Theoretical (2007

    Nonlinear viscosity and velocity distribution function in a simple longitudinal flow

    Full text link
    A compressible flow characterized by a velocity field ux(x,t)=ax/(1+at)u_x(x,t)=ax/(1+at) is analyzed by means of the Boltzmann equation and the Bhatnagar-Gross-Krook kinetic model. The sign of the control parameter (the longitudinal deformation rate aa) distinguishes between an expansion (a>0a>0) and a condensation (a<0a<0) phenomenon. The temperature is a decreasing function of time in the former case, while it is an increasing function in the latter. The non-Newtonian behavior of the gas is described by a dimensionless nonlinear viscosity η(a)\eta^*(a^*), that depends on the dimensionless longitudinal rate aa^*. The Chapman-Enskog expansion of η\eta^* in powers of aa^* is seen to be only asymptotic (except in the case of Maxwell molecules). The velocity distribution function is also studied. At any value of aa^*, it exhibits an algebraic high-velocity tail that is responsible for the divergence of velocity moments. For sufficiently negative aa^*, moments of degree four and higher may diverge, while for positive aa^* the divergence occurs in moments of degree equal to or larger than eight.Comment: 18 pages (Revtex), including 5 figures (eps). Analysis of the heat flux plus other minor changes added. Revised version accepted for publication in PR

    Observation of the ^1P_1 State of Charmonium

    Get PDF
    The spin-singlet P-wave state of charmonium, hc(1P1), has been observed in the decay psi(2S) -> pi0 hc followed by hc -> gamma etac. Inclusive and exclusive analyses of the M(hc) spectrum have been performed. Two complementary inclusive analyses select either a range of energies for the photon emitted in hc -> gamma etac or a range of values of M(etac). These analyses, consistent with one another within statistics, yield M(h_c) =[3524.9 +/- 0.7 (stat) +/- 0.4 (sys)]MeV/c^2 and a product of the branching ratios B_psi(psi(2S) -> pi0 hc) x B_h(hc -> gamma etac) = [3.5 +/- 1.0 (stat) +/- 0.7 (sys)] x 10^{-4}. When the etac is reconstructed in seven exclusive decay modes, 17.5 +/- 4.5 hc events are seen with an average mass M(hc) = [3523.6 +/- 0.9 (stat) +/- 0.5 (sys)] MeV/c^2, and B_psi x B_h = [5.3 +/- 1.5 (stat) +/- 1.0 (sys)] x 10^{-4}. Because the inclusive and exclusive data samples are largely independent they are combined to yield an overall mass M(hc) = [3524.4 +/- 0.6 (stat) +/- 0.4 (sys)]MeV/c^2 and product of branching ratios B_psi x B_h = [4.0 +/- 0.8 (stat) +/- 0.7 (sys)] x 10^{-4}. The hc mass implies a P-wave hyperfine splitting Delta M_{HF}(1P) \equiv M(1^3P)-M(1^1P_1) = [1.0 +/- 0.6 (stat) +/- 0.4 (sys)] MeV/c^2.Comment: 38 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2005/, Submitted to PR
    corecore