7 research outputs found

    Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells

    Get PDF
    Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH−/− mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH−/−-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH−/− iPS cell lines, we aggregated FAH−/−-iPS cells with tetraploid embryos and obtained entirely FAH−/−-iPS cell–derived mice that were viable and exhibited the phenotype of the founding FAH−/− mice. Then, we transduced FAH cDNA into the FAH−/−-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell–derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models

    The kinetics and mechanism of repair of UV induced DNA damage in mammalian cells. The use of 'caged' nucleotides and electroporation to study short time course events in DNA repair.

    No full text
    Using 'caged' DNA break trapping agents as well as the equivalent uncaged reagents and an automated apparatus, we have measured time courses of incorporation of radiolabelled nucleotides into HL60 cellular DNA in the early stages after 248 UV laser damage. These time courses show two distinctive phases, one between 0 and 120 seconds and another after 120 secs following damage. The first phase consists of a transient which shows a rapid initial incorporation of radiolabel followed by a sharp fall in incorporated label. This occurs with TTP as well as ddATP, which suggests that an excision activity which results in removal of recently incorporated bases is not solely provoked by the incorporation of an unnatural base, but also by the incorporation of an incorrectly paired base in a phase of what may be low fidelity repair. The second phase consists of a more steady state of incorporation. Both phases are dose dependent and show higher incorporation at higher doses. The transient is most apparent at does which cause some lethality. It may represent a form of emergency or 'panic' repair where it seems that there may be an immediate effort to maintain strand continuity in the damaged DNA. Results of experiments with polymerase inhibitors suggest that a polymerase which is sensitive to aphidicholin and which shows some sensitivity to dideoxythymidine is active during the transient phase of repair. Since excision of newly incorporated radiolabel takes place very rapidly during the first phase this would imply that a polymerase with an associated proof-reading nuclease is active at this stage. Polymerases alpha, delta, and epsilon all have this property but delta and epsilon have a higher sensitivity to dideoxythymidine than does alpha. Since the transient burst phase shows significant inhibition by dideoxythymidine, it is more likely that delta or epsilon are active at this stage. The putative panic response discussed in relation to proof reading mechanisms in aminoacyl-tRNA and DNA synthesis
    corecore