1,222 research outputs found

    NDE detectability of fatigue type cracks in high strength alloys

    Get PDF
    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level

    Anthropometric changes and fluid shifts

    Get PDF
    Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad

    Study of critical defects in ablative heat shield systems for the space shuttle

    Get PDF
    Results are presented from an investigation to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material in a simulated space shuttle reentry environment. Nondestructive methods for detecting the defects were investigated. The material considered is a fiber-filled, honeycomb-reinforced, low-density elastomer. Results were obtained for density variations, voids, fiber bundles, crushed honeycomb, undercut honeycomb, unbonded areas, face sheet delaminations, and cure variations. The data indicate that, within reasonable tolerances, the fabrication defects investigated are not critical in terms of reentry performance of the heat shield

    Skylab medical data evaluation program (SMEDEP)

    Get PDF
    A day-by-day summary of selected data collected during the experiment is presented. The clinical and environmental data are presented in a mission-day format along with a tabulation of biomedical measurements whose values exceed three standard deviations from the preflight measurements

    Holographic evaluation of fatigue cracks by a compressive stress (HYSTERESIS) technique

    Get PDF
    Holographic interferometry compares unknown field of optical waves with known one. Differences are displayed as interference bands or fringes. Technique was evaluated on fatigue-cracked 2219-T87 aluminum-alloy panels. Small cracks were detected when specimen was incrementally unloaded

    The detection of tightly closed flaws by nondestructive testing (NDT) methods

    Get PDF
    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability

    Study of critical defects in ablative heat shield systems for the space shuttle

    Get PDF
    Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb

    Assessment of the Effects of Scanning Variations and Eddy Current Probe Type on Crack Detection

    Get PDF
    Eddy current procedures are currently the most capable, of the nondestructive evaluation (NDE) techniques that are being applied in industry. The performance capability of an NDE procedure is that of the probability of detection as a function of flaw size. Prediction of the performance capability of a given procedure has been inexact, due to the lack of supporting theory, and has therefore been either validated experimentally or has been assumed to be applicable to a test problem by its similarity to a “time proven” application. Rigorous experimental validation of an NDE procedure is laborious and must be repeated for each new application and/or change in NDE parameters. Attention has been focused on this problem and much of the work described in this volume is directed toward the determination of critical characteristics of NDE applications and in the generation of supporting theory to facilitate predictive modeling of NDE performance capability. The experimental work described in this paper expands on previous work on the characterization of eddy current probes, as applied to flaw detection [1,2], and is directed to support the expansion of application theory [3]

    Eddy Current Calibration of Fatigue Cracks using EDM Notches

    Get PDF
    Eddy current nondestructive evaluation (NDE) is well known as an effective technique for detecting fatigue cracks in conducting materials [1]. Along with detection, it is also important to be able to size fatigue cracks. This sizing is difficult because eddy current phenomena do not in general allow a quantitative image to be obtained, rather, a characteristic signal is obtained from a test which is much like a defect fingerprint. Defect sizing is facilitated by calibration procedures, which utilize classification schemes. EDM notches are often used to produce reference signals which are then used in the classification schemes. There is, however, much discussion in the NDE community as to the accuracy of EDM notch reference standards for eddy current fatigue crack calibration [2–3]. In response to the need for accurate fatigue crack standards to be used for training a classification system for the NASA Space Shuttle main engine heat exchanger unit, a study was carried out comparing eddy current responses to EDM notches and fatigue cracks in stainless steel tubing
    corecore