19,942 research outputs found

    Gating Input to Visual Cortex by Feedback to LGN

    Full text link
    Anatomical studies have documented massive back-projections from higher to lower visual cortices and to the lateral geniculate nucleus (LGN). The large number of synapses from these sources suggest that they should have a profound influence on the information carried by feed-forward inputs to these cells. However, the functional role of these connections is unclear. In order to explore the role of the feedback connections, we have recorded spike trains from electrodes placed in LGN in the macaque monkey under sufenta anesthesia, and have compared LGN cells' activity with and without suppression by cooling of feedback from primary visual cortex (V1). Normally, magno and parvo LGN cells show a wide range over which their responses are proportional to stimulus contrast. Inactivation of V1 feedback causes LGN cells to become more nonlinear and less sensitive to high contrast than during normal conditions. Responses during V1 inactivation have a similar shape to those of retinal ganglion cells. We have also tested the properties of the so-called extended surround as they relate to cortical activity and to influences on responses to LGN stimulation. A model of this data suggests an interpretation in terms of two fnuctional components of feedback: a contrast-dependent component which dominates at high input contrast, and a constant baseline level of inhibitory feedback. We also show that the influence of the extended surround on the classical center mechanism is more complicated than a simple integration model.National Institutes of Health (EY-05156); Office of Naval Research (N00014-95-1-409

    Helium Recombination Lines as a Probe of Abundance and Temperature Problems

    Get PDF
    The paper presents a simplified formula to determine an electron temperature, Te(He I), for planetary nebulae (PNe) using the He I 7281/6678 line flux ratio. In our previous studies of Te(He I) (Zhang et al. 2005), we used the He I line emission coefficients given by Benjamin et al. (1999). Here we examine the results of using more recent atomic data presented by Porter et al. (2005). A good agreement is shown, suggesting that the effect of uncertainties of atomic data on the resultant Te(He I) is negligible. We also present an analytical formula to derive electron temperature using the He I discontinuity at 3421 A. Our analysis shows that Te(He I) values are significantly lower than electron temperatures deduced from the Balmer jump of H I recombination spectra, Te(H I), and that inferred from the collisionally excited [O III] nebular-to-auroral forbidden line flux ratio, Te([O III]). In addition, Te(H I) covers a wider range of values than either Te(He I) or Te([O III]). This supports the two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a ``normal'' chemical composition (i.e. ~solar).Comment: 5 pages, 3 figures. To appear in the RevMexAA proceedings of "The Ninth Texas-Mexico Conference on Astrophysics

    Buffered Reset Leads to Improved Compression in Fuzzy ARTMAP Classification of Radar Range Profiles

    Full text link
    Fuzzy ARTMAP has to date been applied to a variety of automatic target recognition tasks, including radar range profile classification. In simulations of this task, it has demonstrated significant compression compared to k-nearest-neighbor classifiers. During supervised learning, match tracking search allocates memory based on the degree of similarity between newly encountered and previously encountered inputs, regardless of their prior predictive success. Here we invesetigate techniques that buffer reset based on a category's previous predictive success and thereby substantially improve the compression achieved with minimal loss of accuracy.Office of Naval Research (N00014-95-1-0657, N00014-95-1-0409, N00014-96-1-0659

    Dual time scales in simulated annealing of a two-dimensional Ising spin glass

    Full text link
    We apply a generalized Kibble-Zurek out-of-equilibrium scaling ansatz to simulated annealing when approaching the spin-glass transition at temperature T=0T=0 of the two-dimensional Ising model with random J=±1J= \pm 1 couplings. Analyzing the spin-glass order parameter and the excess energy as functions of the system size and the annealing velocity in Monte Carlo simulations with Metropolis dynamics, we find scaling where the energy relaxes slower than the spin-glass order parameter, i.e., there are two different dynamic exponents. The values of the exponents relating the relaxation time scales to the system length, τLz\tau \sim L^z, are z=8.28±0.03z=8.28 \pm 0.03 for the relaxation of the order parameter and z=10.31±0.04z=10.31 \pm 0.04 for the energy relaxation. We argue that the behavior with dual time scales arises as a consequence of the entropy-driven ordering mechanism within droplet theory. We point out that the dynamic exponents found here for T0T \to 0 simulated annealing are different from the temperature-dependent equilibrium dynamic exponent zeq(T)z_{\rm eq}(T), for which previous studies have found a divergent behavior; zeq(T0)z_{\rm eq}(T\to 0) \to \infty. Thus, our study shows that, within Metropolis dynamics, it is easier to relax the system to one of its degenerate ground states than to migrate at low temperatures between regions of the configuration space surrounding different ground states. In a more general context of optimization, our study provides an example of robust dense-region solutions for which the excess energy (the conventional cost function) may not be the best measure of success.Comment: 13 pages, 16 figure

    Calculation of the Two-body T-matrix in Configuration Space

    Full text link
    A spectral integral method (IEM) for solving the two-body Schroedinger equation in configuration space is generalized to the calculation of the corresponding T-matrix. It is found that the desirable features of the IEM, such as the economy of mesh-points for a given required accuracy, are carried over also to the solution of the T-matrix. However the algorithm is considerably more complex, because the T-matrix is a function of two variables r and r', rather than only one variable r, and has a slope discontinuity at r=r'. For a simple exponential potential an accuracy of 7 significant figures is achieved, with the number N of Chebyshev support points in each partition equal to 17. For a potential with a large repulsive core, such as the potential between two He atoms, the accuracy decreases to 4 significant figures, but is restored to 7 if N is increased to 65.Comment: 22 pages, 1 table 8 figure

    Threshold Determination for ARTMAP-FD Familiarity Discrimination

    Full text link
    The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). ARTMAP-FD quantifies the familiarity of a test pattern by computing a measure of the degree to which the pattern's components lie within the ranges of values of training patterns grouped in the same cluster. This familiarity measure is compared to a threshold which can be varied to generate a receiver operating characteristic (ROC) curve. Methods for selecting optimal values for the threshold are evaluated. The performance of validation-set methods is compared with that of methods which track the development of the network's discrimination capability during training. The techniques are applied to databases of simulated radar range profiles.Advanced Research Projects Agency; Office of Naval Research (N00011-95-1-0657, N00011-95-0109, NOOOB-96-0659); National Science Foundation (IRI-94-01659

    Related Services for Vermont\u27s Students with Disabilities

    Get PDF
    The purpose of Related Services for Vermont’s Students with Disabilities is to offer information regarding related services that is consistent with IDEA and with Vermont Law and regulations. It also describes promising or exemplary practices in education, special education, and related services. The manual’s content applies to all related services disciplines which serve students with disabilities, ages 3 through 21, who have an Individualized Education Program (IEP)

    How well do we know the neutron structure function?

    Full text link
    We present a detailed analysis of the uncertainty in the neutron F2n structure function extracted from inclusive deuteron and proton deep-inelastic scattering data. The analysis includes experimental uncertainties as well as uncertainties associated with the deuteron wave function, nuclear smearing, and nucleon off-shell corrections. Consistently accounting for the Q^2 dependence of the data and calculations, and restricting the nuclear corrections to microscopic models of the deuteron, we find significantly smaller uncertainty in the extracted F2n/F2p ratio than in previous analyses. In addition to yielding an improved extraction of the neutron structure function, this analysis also provides an important baseline that will allow future, model-independent extractions of neutron structure to be used to examine nuclear medium effects in the the deuteron.Comment: 5 pages, 6 figure

    Spitzer reveals what's behind Orion's Bar

    Get PDF
    We present Spitzer Space Telescope observations of 11 regions SE of the Bright Bar in the Orion Nebula, along a radial from the exciting star theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep spectra with matching IRS short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin. Orion is the benchmark for studies of the ISM particularly for elemental abundances. Spitzer observations provide a unique perspective on the Ne and S abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.01+/-0.08)E-4. We obtained corresponding new ground-based spectra at CTIO. These optical data are used to estimate the electron temperature, electron density, optical extinction, and the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase S abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7-6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S = 13.0+/-0.6. We derive the electron density versus distance from theta1OriC for [S III] and [S II]. Both distributions are for the most part decreasing with increasing distance. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ~12' from theta1OriC. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte
    corecore