704 research outputs found
Probing a Kondo correlated quantum dot with spin spectroscopy
We investigate Kondo effect and spin blockade observed on a many-electron
quantum dot and study the magnetic field dependence. At lower fields a
pronounced Kondo effect is found which is replaced by spin blockade at higher
fields. In an intermediate regime both effects are visible. We make use of this
combined effect to gain information about the internal spin configuration of
our quantum dot. We find that the data cannot be explained assuming regular
filling of electronic orbitals. Instead spin polarized filling seems to be
probable.Comment: 4 pages, 5 figure
Two path transport measurements on a triple quantum dot
We present an advanced lateral triple quantum dot made by local anodic
oxidation. Three dots are coupled in a starlike geometry with one lead attached
to each dot thus allowing for multiple path transport measurements with two
dots per path. In addition charge detection is implemented using a quantum
point contact. Both in charge measurements as well as in transport we observe
clear signatures of states from each dot. Resonances of two dots can be
established allowing for serial transport via the corresponding path. Quadruple
points with all three dots in resonance are prepared for different electron
numbers and analyzed concerning the interplay of the simultaneously measured
transport along both paths.Comment: 4 pages, 4 figure
Evidence for a Second Order Phase Transition in Glasses at Very Low Temperatures -- A Macroscopic Quantum State of Tunneling Systems
Dielectric measurements at very low temperature indicate that in a glass with
the eutectic composition BaO-AlO-SiO a phase transition occurs at
5.84 mK. Below that temperature small magnetic fields of the order of 10 T
cause noticeable changes of the dielectric constant although the glass is
insensitive to fields up to 20 T above 10 mK. The experimental findings may be
interpreted as the signature of the formation of a new phase in which many
tunneling systems perform a coherent motion resulting in a macroscopic wave
function.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Combined atomic force microscope and electron-beam lithography used for the fabrication of variable-coupling quantum dots
We have combined direct nanofabrication by local anodic oxidation with
conventional electron-beam lithography to produce a parallel double quantum dot
based on a GaAs/AlGaAs heterostructure. The combination of both nanolithography
methods allows to fabricate robust in-plane gates and Cr/Au top gate electrodes
on the same device for optimal controllability. This is illustrated by the
tunability of the interdot coupling in our device. We describe our fabrication
and alignment scheme in detail and demonstrate the tunability in
low-temperature transport measurements.Comment: 4 pages, 3 figure
Non-invasive detection of charge-rearrangement in a quantum dot in high magnetic fields
We demonstrate electron redistribution caused by magnetic field on a single
quantum dot measured by means of a quantum point contact as non-invasive
detector. Our device which is fabricated by local anodic oxidation allows to
control independently the quantum point contact and all tunnelling barriers of
the quantum dot. Thus we are able to measure both the change of the quantum dot
charge and also changes of the electron configuration at constant number of
electrons on the quantum dot. We use these features to exploit the quantum dot
in a high magnetic field where transport through the quantum dot displays the
effects of Landau shells and spin blockade. We confirm the internal
rearrangement of electrons as function of the magnetic field for a fixed number
of electrons on the quantum dot.Comment: 4 pages, 5 figure
SAW Sensor for Fastener Failure Detection
The proof of concept for using surface acoustic wave (SAW) strain sensors in the detection of aircraft fastener failures is demonstrated. SAW sensors were investigated because they have the potential for the development of passive wireless systems. The SAW devices employed four orthogonal frequency coding (OFC) spread spectrum reflectors in two banks on a high temperature piezoelectric substrate. Three SAW devices were attached to a cantilever panel with removable side stiffeners. Damage in the form of fastener failure was simulated by removal of bolts from the side stiffeners. During testing, three different force conditions were used to simulate static aircraft structural response under loads. The design of the sensor, the panel arrangement and the panel testing results are reported. The results show that the sensors successfully detected single fastener failure at distances up to 54.6 cm from the failure site under loaded conditions
Few recurring types of microdomains define smallest units of soilfunctioning
Soil aggregation is a key factor for a number of important biogeochemical processes (e.g. soil organic matter stabilization and nutrient and pollutant sorption) in soils. Although there is a large number of studies on the factors controlling such soil processes, it is still challenging to study these processes in-situ. However, it can be assumedthat the spatial arrangement of organic and mineral soil constituents in soil aggregates, and thus the aggregate structure determine the processes happening at the aggregate scale. Using nanoscale secondary ion mass spectroscopy and a novel digital image processing approach, we extensively analyzed the spatial distribution of ions characteristic for mineral and organic soil components on the micrometer-scale in an intact soil aggregate. We were surprised that 40 spatially independent measurements could be statistically clustered in just two complimentary types of micrometer-sized domains. Each domain is characterized by a micro-architecture built of a definitemineral assemblage with various organic matter forms and a specific pore system. Each of these microdomainsfulfil different functions in soil. Our results demonstrate that the manifold mineral and organic soil components arrange in a limited number of micro-architectures because of self-organization and feedback mechanisms. Thesemicrodomains are the smallest units in soil that fulfill specific functionalities
Enhancing workflow-nets with data for trace completion
The growing adoption of IT-systems for modeling and executing (business)
processes or services has thrust the scientific investigation towards
techniques and tools which support more complex forms of process analysis. Many
of them, such as conformance checking, process alignment, mining and
enhancement, rely on complete observation of past (tracked and logged)
executions. In many real cases, however, the lack of human or IT-support on all
the steps of process execution, as well as information hiding and abstraction
of model and data, result in incomplete log information of both data and
activities. This paper tackles the issue of automatically repairing traces with
missing information by notably considering not only activities but also data
manipulated by them. Our technique recasts such a problem in a reachability
problem and provides an encoding in an action language which allows to
virtually use any state-of-the-art planning to return solutions
A planar Al-Si Schottky Barrier MOSFET operated at cryogenic temperatures
Schottky Barrier (SB)-MOSFET technology offers intriguing possibilities for
cryogenic nano-scale devices, such as Si quantum devices and superconducting
devices. We present experimental results on a novel device architecture where
the gate electrode is self-aligned with the device channel and overlaps the
source and drain electrodes. This facilitates a sub-5 nm gap between the
source/drain and channel, and no spacers are required. At cryogenic
temperatures, such devices function as p-MOS Tunnel FETs, as determined by the
Schottky barrier at the Al-Si interface, and as a further advantage,
fabrication processes are compatible with both CMOS and superconducting logic
technology.Comment: 6 pages, 4 figures, minor changes from the previous version
- …