1,003 research outputs found
Dynamics of capillary spreading along hydrophilic microstripes
We have studied the capillary spreading of a Newtonian liquid along hydrophilic microstripes that are chemically defined on a hydrophobic substrate. The front of the spreading film advances in time according to a power law x=Bt1/2. This exponent of 1/2 is much larger than the value 1/10 observed in the axisymmetric spreading of a wetting droplet. It is identical to the exponent found for wicking in open or closed microchannels. Even though no wicking occurs in our system, the influence of surface curvature induced by the lateral confinement of the liquid stripe also leads to an exponent of 1/2 but with a strongly modified prefactor B. We obtain excellent experimental agreement with the predicted time dependence of the front location and the dependence of the front speed on the stripe width. Additional experiments and simulations reveal the influence of the reservoir volume, liquid material parameters, edge roughness, and nonwetting defects. These results are relevant to liquid dosing applications or microfluidic delivery systems based on free-surface flow
Diffusion mechanisms of localised knots along a polymer
We consider the diffusive motion of a localized knot along a linear polymer
chain. In particular, we derive the mean diffusion time of the knot before it
escapes from the chain once it gets close to one of the chain ends.
Self-reptation of the entire chain between either end and the knot position,
during which the knot is provided with free volume, leads to an L^3 scaling of
diffusion time; for sufficiently long chains, subdiffusion will enhance this
time even more. Conversely, we propose local ``breathing'', i.e., local
conformational rearrangement inside the knot region (KR) and its immediate
neighbourhood, as additional mechanism. The contribution of KR-breathing to the
diffusion time scales only quadratically, L^2, speeding up the knot escape
considerably and guaranteeing finite knot mobility even for very long chains.Comment: 7 pages, 2 figures. Accepted to Europhys. Let
Waves of DNA: Propagating excitations in extended nanoconfined polymers
We use a nanofluidic system to investigate the emergence of thermally driven collective phenomena along a single polymer chain. In our approach, a single DNA molecule is confined in a nanofluidic slit etched with arrays of embedded nanocavities; the cavity lattice is designed so that a single chain occupies multiple cavities. Fluorescent video-microscopy data shows fluctuations in intensity between cavities, including waves of excess fluorescence that propagate across the cavity-straddling molecule, corresponding to propagating fluctuations of contour overdensity in the cavities. The transfer of DNA between neighboring pits is quantified by examining the correlation in intensity fluctuations between neighboring cavities. Correlations grow from an anticorrelated minimum to a correlated maximum before decaying, corresponding to a transfer of contour between neighboring cavities at a fixed transfer time scale. The observed dynamics can be modeled using Langevin dynamics simulations and a minimal lattice model of coupled diffusion. This study shows how confinement-based sculpting of the polymer equilibrium configuration, by renormalizing the physical system into a series of discrete cavity states, can lead to new types of dynamic collective phenomena.Natural Sciences and Engineering Research Council of Canada (Grant NSERC-DG, 386212-10)Canada Foundation for InnovationNatural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship
Recommended from our members
Proton reduction by molecular catalysts in water under demanding atmospheres.
The electrocatalytic proton reduction activity of a Ni bis(diphosphine) (NiP) and a cobaloxime (CoP) catalyst has been studied in water in the presence of the gaseous inhibitors O2 and CO. CoP shows an appreciable tolerance towards O2, but its activity suffers severely in the presence of CO. In contrast, NiP is strongly inhibited by O2, but produces H2 under high CO concentrations.Financial support from the EPSRC (EP/H00338X/2), the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and National Foundation for Research, Technology and Development), and the OMV Group is gratefully acknowledged.Originally published by The Royal Society of Chemistry, Chem. Commun., 2014, 50, 15995, http://dx.doi.org/10.1039/C4CC06159
Harmonically confined, semiflexible polymer in a channel: response to a stretching force and spatial distribution of the endpoints
We consider an inextensible, semiflexible polymer or worm-like chain which is
confined in the transverse direction by a parabolic potential and subject to a
longitudinal force at the ends, so that the polymer is stretched out and
backfolding is negligible. Simple analytic expressions for the partition
function, valid in this regime, are obtained for chains of arbitrary length
with a variety of boundary conditions at the ends. The spatial distribution of
the end points or radial distribution function is also analyzed.Comment: 14 pages including figure
Photocatalytic Formic Acid Conversion on CdS Nanocrystals with Controllable Selectivity for H2 or CO.
Formic acid is considered a promising energy carrier and hydrogen storage material for a carbon-neutral economy. We present an inexpensive system for the selective room-temperature photocatalytic conversion of formic acid into either hydrogen or carbon monoxide. Under visible-light irradiation (λ>420 nm, 1 sun), suspensions of ligand-capped cadmium sulfide nanocrystals in formic acid/sodium formate release up to 116±14 mmol H2 g(cat)(-1) h(-1) with >99% selectivity when combined with a cobalt co-catalyst; the quantum yield at λ=460 nm was 21.2±2.7%. In the absence of capping ligands, suspensions of the same photocatalyst in aqueous sodium formate generate up to 102±13 mmol CO g(cat)(-1) h(-1) with >95% selectivity and 19.7±2.7% quantum yield. H2 and CO production was sustained for more than one week with turnover numbers greater than 6×10(5) and 3×10(6), respectively.This work was supported by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development), the OMV Group, the EPSRC (EP/H00338X/2 to ER), the Isaac Newton Trust, the German Research Foundation (MFK), and the Advanced Institute for Materials Research-Cambridge Joint Research Centre (KLO). XPS spectra were obtained at the National EPSRC XPS User's Service (NEXUS) at Newcastle University, an EPSRC Mid-Range Facility.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/anie.20150623
Recommended from our members
Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase.
CO2 and formate are rapidly, selectively, and efficiently interconverted by tungsten-containing formate dehydrogenases that surpass current synthetic catalysts. However, their mechanism of catalysis is unknown, and no tractable system is available for study. Here, we describe the catalytic properties of the molybdenum-containing formate dehydrogenase H from the model organism Escherichia coli (EcFDH-H). We use protein film voltammetry to demonstrate that EcFDH-H is a highly active, reversible electrocatalyst. In each voltammogram a single point of zero net current denotes the CO2 reduction potential that varies with pH according to the Nernst equation. By quantifying formate production we show that electrocatalytic CO2 reduction is specific. Our results reveal the capabilities of a Mo-containing catalyst for reversible CO2 reduction and establish EcFDH-H as an attractive model system for mechanistic investigations and a template for the development of synthetic catalysts.This is the final version. It was first published by ACS at http://pubs.acs.org/doi/abs/10.1021/ja508647
Ancient Egypt 1920 Part 1
Part 1 of the 1920 Ancient Egypt books. Contents include the return to research, Nile boats, the treasure of Antinoe, a mace head of Hierakonpolis, and an early portrait.https://knowledge.e.southern.edu/kweeks_coll/1010/thumbnail.jp
- …