8,382 research outputs found
Siamese Instance Search for Tracking
In this paper we present a tracker, which is radically different from
state-of-the-art trackers: we apply no model updating, no occlusion detection,
no combination of trackers, no geometric matching, and still deliver
state-of-the-art tracking performance, as demonstrated on the popular online
tracking benchmark (OTB) and six very challenging YouTube videos. The presented
tracker simply matches the initial patch of the target in the first frame with
candidates in a new frame and returns the most similar patch by a learned
matching function. The strength of the matching function comes from being
extensively trained generically, i.e., without any data of the target, using a
Siamese deep neural network, which we design for tracking. Once learned, the
matching function is used as is, without any adapting, to track previously
unseen targets. It turns out that the learned matching function is so powerful
that a simple tracker built upon it, coined Siamese INstance search Tracker,
SINT, which only uses the original observation of the target from the first
frame, suffices to reach state-of-the-art performance. Further, we show the
proposed tracker even allows for target re-identification after the target was
absent for a complete video shot.Comment: This paper is accepted to the IEEE Conference on Computer Vision and
Pattern Recognition, 201
Spectroscopic Evidence for the Specific Na+ and K+ Interactions with the Hydrogen-bonded Water Molecules at the Electrolyte Aqueous Solution Surfaces
Sum frequency generation vibrational spectra of the water molecules at the
NaF and KF aqueous solution surfaces showed significantly different spectral
features and different concentration dependence. This result is the first
direct observation of the cation effects of the simple alkali cations, which
have been believed to be depleted from the aqueous surface, on the hydrogen
bonding structure of the water molecules at the electrolyte solution surfaces.
These observations may provide important clue to understand the fundamental
phenomenon of ions at the air/water interface.Comment: 15 pages, 2 figure
Recommended from our members
A Deep Learning Approach to Examine Ischemic ST Changes in Ambulatory ECG Recordings.
Patients with suspected acute coronary syndrome (ACS) are at risk of transient myocardial ischemia (TMI), which could lead to serious morbidity or even mortality. Early detection of myocardial ischemia can reduce damage to heart tissues and improve patient condition. Significant ST change in the electrocardiogram (ECG) is an important marker for detecting myocardial ischemia during the rule-out phase of potential ACS. However, current ECG monitoring software is vastly underused due to excessive false alarms. The present study aims to tackle this problem by combining a novel image-based approach with deep learning techniques to improve the detection accuracy of significant ST depression change. The obtained convolutional neural network (CNN) model yields an average area under the curve (AUC) at 89.6% from an independent testing set. At selected optimal cutoff thresholds, the proposed model yields a mean sensitivity at 84.4% while maintaining specificity at 84.9%
- …