4,186 research outputs found

    Self-aligned fabrication process for silicon quantum computer devices

    Full text link
    We describe a fabrication process for devices with few quantum bits (qubits), which are suitable for proof-of-principle demonstrations of silicon-based quantum computation. The devices follow the Kane proposal to use the nuclear spins of 31P donors in 28Si as qubits, controlled by metal surface gates and measured using single electron transistors (SETs). The accurate registration of 31P donors to control gates and read-out SETs is achieved through the use of a self-aligned process which incorporates electron beam patterning, ion implantation and triple-angle shadow-mask metal evaporation

    The variable phase method used to calculate and correct scattering lengths

    Full text link
    It is shown that the scattering length can be obtained by solving a Riccati equation derived from variable phase theory. Two methods of solving it are presented. The equation is used to predict how long-range interactions influence the scattering length, and upper and lower bounds on the scattering length are determined. The predictions are compared with others and it is shown how they may be obtained from secular perturbation theory.Comment: 7 pages including 3 figure

    A new liver perfusion and preservation system for transplantation Research in large animals

    Get PDF
    A kidney perfusion machine, model MOX-100 (Waters Instruments, Ltd, Rochester, MN) was modified to allow continuous perfusion of the portal vein and pulsatile perfusion of the hepatic artery of the liver. Additional apparatus consists of a cooling system, a membrane oxygenator, a filter for foreign bodies, and bubble traps. This system not only allows hypothermic perfusion preservation of the liver graft, but furthermore enables investigation of ex vivo simulation of various circulatory circumstances in which physiological perfusion of the liver is studied. We have used this system to evaluate the viability of liver allografts preserved by cold storage. The liver was placed on the perfusion system and perfused with blood with a hematocrit of approximately 20% and maintained at 37°C for 3 h. The flows of the hepatic artery and portal vein were adjusted to 0.33 mL and 0.67 mL/g of liver tissue, respectively. Parameters of viability consisted of hourly bile output, oxygen consumption, liver enzymes, electrolytes, vascular resistance, and liver histology. This method of liver assessment in large animals will allow the objective evaluation of organ viability for transplantation and thereby improve the outcome of organ transplantation. Furthermore, this pump enables investigation into the pathophysiology of liver ischemia and preservation. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Perturbation expansions for a class of singular potentials

    Full text link
    Harrell's modified perturbation theory [Ann. Phys. 105, 379-406 (1977)] is applied and extended to obtain non-power perturbation expansions for a class of singular Hamiltonians H = -D^2 + x^2 + A/x^2 + lambda/x^alpha, (A\geq 0, alpha > 2), known as generalized spiked harmonic oscillators. The perturbation expansions developed here are valid for small values of the coupling lambda > 0, and they extend the results which Harrell obtained for the spiked harmonic oscillator A = 0. Formulas for the the excited-states are also developed.Comment: 23 page

    Preparation of anti-vicinal amino alcohols: asymmetric synthesis of D-erythro-Sphinganine, (+)-spisulosine and D-ribo-phytosphingosine

    Get PDF
    Two variations of the Overman rearrangement have been developed for the highly selective synthesis of anti-vicinal amino alcohol natural products. A MOM-ether directed palladium(II)-catalyzed rearrangement of an allylic trichloroacetimidate was used as the key step for the preparation of the protein kinase C inhibitor D-erythro-sphinganine and the antitumor agent (+)-spisulosine, while the Overman rearrangement of chiral allylic trichloroacetimidates generated by asymmetric reduction of an alpha,beta-unsaturated methyl ketone allowed rapid access to both D-ribo-phytosphingosine and L-arabino-phytosphingosine

    Cold Collision Frequency Shift of the 1S-2S Transition in Hydrogen

    Get PDF
    We have observed the cold collision frequency shift of the 1S-2S transition in trapped spin-polarized atomic hydrogen. We find Δν1S−2S=−3.8(8)×10−10nHzcm3\Delta \nu_{1S-2S} = -3.8(8)\times 10^{-10} n Hz cm^3, where nn is the sample density. From this we derive the 1S-2S s-wave triplet scattering length, a1S−2S=−1.4(3)a_{1S-2S}=-1.4(3) nm, which is in fair agreement with a recent calculation. The shift provides a valuable probe of the distribution of densities in a trapped sample.Comment: Accepted for publication in PRL, 9 pages, 4 PostScript figures, ReVTeX. Updated connection of our measurement to theoretical wor

    1S-2S Spectrum of a Hydrogen Bose-Einstein Condensate

    Full text link
    We calculate the two-photon 1S-2S spectrum of an atomic hydrogen Bose-Einstein condensate in the regime where the cold collision frequency shift dominates the lineshape. WKB and static phase approximations are made to find the intensities for transitions from the condensate to motional eigenstates for 2S atoms. The excited state wave functions are found using a mean field potential which includes the effects of collisions with condensate atoms. Results agree well with experimental data. This formalism can be used to find condensate spectra for a wide range of excitation schemes.Comment: 13 pages, 4 figure
    • …
    corecore