1,312 research outputs found
Cross-Correlation Studies with CMB Polarization Maps
The free-electron population during the reionized epoch rescatters CMB
temperature quadrupole and generates a now well-known polarization signal at
large angular scales. While this contribution has been detected in the
temperature-polarization cross power spectrum measured with WMAP data, due to
the large cosmic variance associated with anisotropy measurements at tens of
degree angular scales only limited information related to reionization, such as
the optical depth to electron scattering, can be extracted. The inhomogeneities
in the free-electron population lead to an additional secondary polarization
anisotropy contribution at arcminute scales. While the fluctuation amplitude,
relative to dominant primordial fluctuations, is small, we suggest that a
cross-correlation between arcminute scale CMB polarization data and a tracer
field of the high redshift universe, such as through fluctuations captured by
the 21 cm neutral Hydrogen background or those in the infrared background
related to first proto-galaxies, may allow one to study additional details
related to reionization. For this purpose, we discuss an optimized higher order
correlation measurement, in the form of a three-point function, including
information from large angular scale CMB temperature anisotropies in addition
to arcminute scale polarization signal related to inhomogeneous reionization.
We suggest that the proposed bispectrum can be measured with a substantial
signal-to-noise ratio and does not require all-sky maps of CMB polarization or
that of the tracer field. A measurement such as the one proposed may allow one
to establish the epoch when CMB polarization related to reionization is
generated and to address if the universe was reionized once or twice.Comment: 13 pages, 7 figures; Version in press with Phys. Rev.
Gravitational Stability of Circumnuclear Disks in Elliptical Galaxies
A significant fraction of nearby elliptical galaxies are known to have high
density gas disks in their circumnuclear (CN) region (0.1 to a few kpc). Yet,
ellipticals, especially luminous ones, show little signs of recent star
formation (SF). To investigate the possible cause of the dearth of SF in these
systems, we study the gravitational stability of CN gas disks embedded within
the potentials of both the stellar bulge and the central massive black hole
(BH) in ellipticals. We find that CN disks in higher mass galaxies are
generally more stable than those in lower mass galaxies, because higher mass
galaxies tend to have more massive BHs and more centrally concentrated stellar
density profiles. We also consider the case in which the central stellar
density profile has a core, which is often observed for ellipticals whose total
stellar mass is higher than about 10^11 Msun. Such a cored stellar density
profile leads to more unstable CN disks than the power-law density profile
characteristic of less massive galaxies. However, the more massive BHs in
high-mass galaxies act to stabilize the CN disk. Our results demonstrate that
the gravitational potentials of both the central BH and the stellar component
should be taken into account when studying the properties of CN disks, as their
stability is sensitive to both the BH mass and the stellar density profile. Our
results could explain the observed trend that less luminous ellipticals have a
greater tendency to exhibit ongoing SF than giant ellipticals.Comment: 8 pages, 5 figures, accepted for publication in Ap
Hydrogen-like nitrogen radio line from hot interstellar and warm-hot intergalactic gas
Hyperfine structure lines of highly-charged ions may open a new window in
observations of hot rarefied astrophysical plasmas. In this paper we discuss
spectral lines of isotopes and ions abundant at temperatures 10^5-10^7 K,
characteristic for warm-hot intergalactic medium, hot interstellar medium,
starburst galaxies, their superwinds and young supernova remnants. Observations
of these lines will allow to study bulk and turbulent motions of the observed
target and will broaden the information about the gas ionization state,
chemical and isotopic composition.
The most prospective is the line of the major nitrogen isotope having
wavelength 5.65 mm (Sunyaev and Churazov 1084). Wavelength of this line is
well-suited for observation of objects at z=0.15-0.6 when it is redshifted to
6.5-9 mm spectral band widely-used in ground-based radio observations, and, for
example, for z>=1.3, when the line can be observed in 1.3 cm band and at lower
frequencies. Modern and future radio telescopes and interferometers are able to
observe the absorption by 14-N VII in the warm-hot intergalactic medium at
redshifts above z=0.15 in spectra of brightest mm-band sources. Sub-millimeter
emission lines of several most abundant isotopes having hyperfine splitting
might also be detected in spectra of young supernova remnants.Comment: 12 pages, 5 figures, accepted by Astronomy Letters; v3: details
added; error fixe
Cosmological Limits on the Neutrino Mass from the Lya Forest
The Lya forest in quasar spectra probes scales where massive neutrinos can
strongly suppress the growth of mass fluctuations. Using hydrodynamic
simulations with massive neutrinos, we successfully test techniques developed
to measure the mass power spectrum from the forest. A recent observational
measurement in conjunction with a conservative implementation of other
cosmological constraints places upper limits on the neutrino mass: m_nu < 5.5
eV for all values of Omega_m, and m_nu < 2.4 (Omega_m/0.17 -1) eV, if 0.2 <
Omega_m <0.5 as currently observationally favored (both 95 % C.L.).Comment: 4 pages, 2 ps figures, REVTex, submitted to Phys. Rev. Let
Recovering the Inflationary Potential
A procedure is developed for the recovery of the inflationary potential over
the interval that affects astrophysical scales (\approx 1\Mpc - 10^4\Mpc).
The amplitudes of the scalar and tensor metric perturbations and their
power-spectrum indices, which can in principle be inferred from large-angle CBR
anisotropy experiments and other cosmological data, determine the value of the
inflationary potential and its first two derivatives. From these, the
inflationary potential can be reconstructed in a Taylor series and the
consistency of the inflationary hypothesis tested. A number of examples are
presented, and the effect of observational uncertainties is discussed.Comment: 13 pages LaTeX, 6 Figs. available on request, FNAL-Pub-93/182-
A Texture Bestiary
Textures are topologically nontrivial field configurations which can exist in
a field theory in which a global symmetry group is broken to a subgroup
, if the third homotopy group \p3 of is nontrivial. We compute this
group for a variety of choices of and , revealing what symmetry breaking
patterns can lead to texture. We also comment on the construction of texture
configurations in the different models.Comment: 34 pages, plain Tex. (Minor corrections to an old paper.
A new topological aspect of the arbitrary dimensional topological defects
We present a new generalized topological current in terms of the order
parameter field to describe the arbitrary dimensional topological
defects. By virtue of the -mapping method, we show that the topological
defects are generated from the zero points of the order parameter field , and the topological charges of these topological defects are topological
quantized in terms of the Hopf indices and Brouwer degrees of -mapping
under the condition that the Jacobian . When , it is shown that there exist the crucial case of branch process.
Based on the implicit function theorem and the Taylor expansion, we detail the
bifurcation of generalized topological current and find different directions of
the bifurcation. The arbitrary dimensional topological defects are found
splitting or merging at the degenerate point of field function but
the total charge of the topological defects is still unchanged.Comment: 24 pages, 10 figures, Revte
The Universe Was Reionized Twice
We show the universe was reionized twice, first at z~15-16 and second at z~6.
Such an outcome appears inevitable, when normalizing to two well determined
observational measurements, namely, the epoch of the final cosmological
reionization at z~6 and the density fluctuations at z~6, which in turn are
tight ly constrained by Lyman alpha forest observations at z~3. These two
observations most importantly fix the product of star formation efficiency and
ionizing photon escape fraction from galaxies at high redshift. To the extent
that the relative star formation efficiencies in gaseous minihalos with H2
cooling and large halos with atomic cooling at high redshift are still unknown,
the primary source for the first reionization could be Pop III stars either in
minihalos or in large halos. We show that gas in minihalos can be cooled
efficiently by H2 molecules and star formation can continue to take place
largely unimpeded throughout the first reionization period, thanks to two new
mechanisms for generating a high X-ray background during the Pop III era, put
forth here. Moreover, an important process for producing a large number of H2
molecules in relic HII regions of Pop III galaxies, first pointed out by
Ricotti, Gnedin, & Shull, is quantified here. It is shown that the Lyman-Werner
background may never build up during the Pop III era. The long cosmological
reionization and reheating history is complex. We discuss a wide range of
implications and possible tests for this new reionization picture. In
particular, Thomson scattering optical depth is increased to 0.10 +- 0.03,
compared to 0.027 for the case of only one rapid reionization at z=6. Upcoming
Microwave Anisotropy Probe observation of the polarization of the cosmic
microwave background should be able to distinguish between these two scenarios.Comment: submitted to ApJ, 69 pages, substantial revision made and conclusions
strengthene
Sizes, Shapes, and Correlations of Lyman Alpha Clouds and Their Evolution in the CDM Universe
This study analyzes the sizes, shapes and correlations of \lya clouds
produced by a hydrodynamic simulation of a spatially flat CDM universe with a
non-zero cosmological constant (, , ), over the redshift range . The \lya clouds range in
size from several kiloparsecs to about a hundred kiloparsecs in proper units,
and they range in shape from roundish, high column density regions with
\nhi\ge 10^{15} cm^{-2} to low column density sheet-like structures with
\nhi \le 10^{13} cm^{-2} at z=3. The most common shape found in the
simulation resembles that of a flattened cigar. The physical size of a typical
cloud grows with time roughly as while its shape hardly evolves
(except for the most dense regions ). Our result indicates that
any simple model with a population of spheres (or other shapes) of a uniform
size is oversimplified; if such a model agrees with observational evidence, it
is probably only by coincidence. We also illustrate why the use of double
quasar sightlines to set lower limits on cloud sizes is useful only when the
perpendicular sightline separation is small ( kpc).
Finally, we conjecture that high column density \lya clouds (\nhi\ge 10^{15}
cm^{-2}) may be the progenitors of the lower redshift faint blue galaxies.
This seems plausible because their correlation length, number density
(extrapolated to lower redshift) and their masses are in fair agreement with
those observed.Comment: ApJ, in press, 34 pages, 21 figures, figs (1a,b,c) can be at
http://astro.princeton.edu/~cen/LYASSC/lyassc.htm
Quantum Correlation in One-dimensional Extend Quantum Compass Model
We study the correlations in the one-dimensional extended quantum compass
model in a transverse magnetic field. By exactly solving the Hamiltonian, we
find that the quantum correlation of the ground state of one-dimensional
quantum compass model is vanishing. We show that quantum discord can not only
locate the quantum critical points, but also discern the orders of phase
transitions. Furthermore, entanglement quantified by concurrence is also
compared.Comment: 8 pages, 14 figures, to appear in Eur. Phys. J.
- …