31 research outputs found
Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs
Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit âcoldâ electroluminescence in percolation films1,2, tunnel diodes3, electromigrated nanoparticle aggregates4,5, optical antennas6 or scanning tunnelling microscopy7,8,9. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRETâlight-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides10. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes11 in on-chip optical interconnects
Yttria-stabilized zirconia microspheres: Novel building blocks for high-temperature photonics
Zirconia-based ceramics cover a huge variety of applications, including refractories, electro- and bioceramics, fuel cells, catalysts, and many more. For various photonic applications considered for energy systems and heat management, zirconia microspheres are interesting building blocks due to their high refractive index, as well as their chemical and mechanical robustness. However, instabilities caused by thermally-induced phase transitions and grain growth at temperatures above âŒ1000 °C preclude high-temperature applications of pure zirconia particles. Here, we present a synthetic route for yttria-stabilized zirconia microparticles with significantly improved thermal stability. With these particles we conducted the first study on their thermal stability as a function of the yttrium content and at temperatures up to 1500 °C. Using X-ray diffraction and scanning electron microscopy, the optimum Y content was determined to be 8-10%, which was marked by stabilization of the tetragonal or cubic phase and significantly attenuated grain growth. Furthermore, with diameters ranging from 2 to 5 ÎŒm, the particles covered a size range perfectly suited for photonic applications in the IR spectral range. To demonstrate this, photonic glass coatings were prepared with these particles and their IR reflectivity and microstructural stability was studied after subjecting them to various heating cycles. While heating beyond 1200 °C led to failure and delamination of undoped particle films, films doped with 6 and 10% Y displayed quite stable broadband IR reflection of up to 80% in the wavelength range from 1-5 ÎŒm, even after prolonged heating at 1400 °C. A detailed analysis of the X-ray diffraction patterns revealed that prolonged heating at 1400 °C resulted in phase decomposition due to Y segregation into Y-lean and Y-rich domains, confirming the presence of the solute-drag effect