38 research outputs found

    Pressure dependence of electrical conductivity in forsterite

    Get PDF
    Electrical conductivity of dry forsterite has been measured in muli-anvil apparatus to investigate the pressure dependence of ionic conduction in forsterite. The starting materials for the conductivity experiments were a synthetic forsterite single crystal and a sintered forsterite aggregate synthesized from oxide mixture. Electrical conductivities were measured at 3.5, 6.7, 9.6, 12.1, and 14.9 GPa between 1300 and 2100 K. In the measured temperature range, the conductivity of single crystal forsterite decreases in the order of [001], [010], and [100]. In all cases, the conductivity decreases with increasing pressure and then becomes nearly constant for [100] and [001] and slightly increases above 7 GPa for [010] orientations and a polycrystalline forsterite sample. Pressure dependence of forsterite conductivity was considered as a change of the dominant conduction mechanism composed of migration of both magnesium and oxygen vacancies in forsterite. The activation energy (ΔE) and activation volume (ΔV) for ionic conduction due to migration of Mg vacancy were 1.8–2.7 eV and 5–19 cm3/mol, respectively, and for that due to O vacancy were 2.2–3.1 eV and −1.1 to 0.3 cm3/mol, respectively. The olivine conductivity model combined with small polaron conduction suggests that the most part of the upper mantle is controlled by ionic conduction rather than small polaron conduction. The previously observed negative pressure dependence of the conductivity of olivine with low iron content (Fo90) can be explained by ionic conduction due to migration of Mg vacancies, which has a large positive activation volume

    Analysis of product morphologies and reaction mechanisms on gaseous reduction of iron oxides

    No full text
    It is well established that in gaseous reduction processes solid iron oxides exhibit a wide range of reducibilities. Using the interface stability criteria developed to describe the decomposition of metal compounds in reactive gas atmospheres, together with microstructural evidence obtained under well characterised reaction conditions, the relationships between product structures, and the mechanisms and the kinetics of reduction of iron oxides have been examined. It is shown that the structures and reaction rates can be explained through the occurrence of four principal mechanisms; continuous gas pore formation, dense metal layer growth, discontinuous metal layer breakdown and continuous coupled growth of metal and pores. Through identification of the critical conditions for these different mechanisms, the maximum rates of reduction of a given starting material as a function of temperature, thermal history and gas conditions can be more clearly understood
    corecore