419 research outputs found
First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength
We present the first observation of Self-Amplified Spontaneous Emission
(SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109
nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and
the radiation characteristics, such as dependency on bunch charge, angular
distribution, spectral width and intensity fluctuations all corroborate the
existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]
Проектирование автоматизированной групповой замерной установки при разработке Макарьевского месторождения нефти на проточном-1 лицензионном участке недр Томской области
В данной дипломной работе произведено обоснование оптимальной конфигурации и проектирование автоматизированной группой замерной установки для системы сбора продукции эксплуатационных скважин в рамках прогноза эффективности разработки Макарьевского месторождения Томской области.In this graduation work the study of the optimal configuration and design of automated group measuring system for the collection system of production wells within the forecast development efficiency Makar deposits of Tomsk region
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
Quadrature Strategies for Constructing Polynomial Approximations
Finding suitable points for multivariate polynomial interpolation and
approximation is a challenging task. Yet, despite this challenge, there has
been tremendous research dedicated to this singular cause. In this paper, we
begin by reviewing classical methods for finding suitable quadrature points for
polynomial approximation in both the univariate and multivariate setting. Then,
we categorize recent advances into those that propose a new sampling approach
and those centered on an optimization strategy. The sampling approaches yield a
favorable discretization of the domain, while the optimization methods pick a
subset of the discretized samples that minimize certain objectives. While not
all strategies follow this two-stage approach, most do. Sampling techniques
covered include subsampling quadratures, Christoffel, induced and Monte Carlo
methods. Optimization methods discussed range from linear programming ideas and
Newton's method to greedy procedures from numerical linear algebra. Our
exposition is aided by examples that implement some of the aforementioned
strategies
In Situ Identification of Plant-Invasive Bacteria with MALDI-TOF Mass Spectrometry
Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues
Mechanism of Disruption of the Amt-GlnK Complex by PII-Mediated Sensing of 2-Oxoglutarate
GlnK proteins regulate the active uptake of ammonium by Amt transport proteins by inserting their regulatory T-loops into the transport channels of the Amt trimer and physically blocking substrate passage. They sense the cellular nitrogen status through 2-oxoglutarate, and the energy level of the cell by binding both ATP and ADP with different affinities. The hyperthermophilic euryarchaeon Archaeoglobus fulgidus possesses three Amt proteins, each encoded in an operon with a GlnK ortholog. One of these proteins, GlnK2 was recently found to be incapable of binding 2-OG, and in order to understand the implications of this finding we conducted a detailed structural and functional analysis of a second GlnK protein from A. fulgidus, GlnK3. Contrary to Af-GlnK2 this protein was able to bind both ATP/2-OG and ADP to yield inactive and functional states, respectively. Due to the thermostable nature of the protein we could observe the exact positioning of the notoriously flexible T-loops and explain the binding behavior of GlnK proteins to their interaction partner, the Amt proteins. A thermodynamic analysis of these binding events using microcalorimetry evaluated by microstate modeling revealed significant differences in binding cooperativity compared to other characterized PII proteins, underlining the diversity and adaptability of this class of regulatory signaling proteins
Quality of MALDI-TOF Mass Spectra in Routine Diagnostics: Results from an International External Quality Assessment including 36 Laboratories from 12 countries using 47 challenging bacterial strains.
OBJECTIVE
MALDI-TOF MS is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are: number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it.
METHODS
For baseline MSQ assessment, 47 diverse bacterial strains which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared.
RESULTS
At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [5, 25]), reproducibility between technical replicates (range = [55%, 86%]), and measurement error (range = [147 parts per million (ppm), 588ppm]). As a general trend, the spectral quality was improved after the intervention for devices which yielded low MSQs in the baseline assessment: for 4/5 devices with a high measurement error, the measurement precision was improved (p-values<0.001, paired Wilcoxon test); for 6/10 devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values<0.001, paired Wilcoxon test).
CONCLUSION
We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this EQA requires further study
Multiple star systems in the Orion nebula
This is the author accepted manuscript. The final fersion is available from EDP Sciences via the DOI in this record.This work presents an interferometric study of the massive-binary fraction in the Orion Trapezium cluster with the recently comissioned GRAVITY instrument. We observed a total of 16 stars of mainly OB spectral type. We find three previously unknown companions for θ1 Ori B, θ2 Ori B, and θ2 Ori C. We determined a separation for the previously suspected companion of NU Ori. We confirm four companions for θ1 Ori A, θ1 Ori C, θ1 Ori D, and θ2 Ori A, all with substantially improved astrometry and photometric mass estimates. We refined the orbit of the eccentric high-mass binary θ1 Ori C and we are able to derive a new orbit for θ1 Ori D. We find a system mass of 21.7 M⊙ and a period of 53 days. Together with other previously detected companions seen in spectroscopy or direct imaging, eleven of the 16 high-mass stars are multiple systems. We obtain a total number of 22 companions with separations up to 600 AU. The companion fraction of the early B and O stars in our sample is about two, significantly higher than in earlier studies of mostly OB associations. The separation distribution hints toward a bimodality. Such a bimodality has been previously found in A stars, but rarely in OB binaries, which up to this point have been assumed to be mostly compact with a tail of wider companions. We also do not find a substantial population of equal-mass binaries. The observed distribution of mass ratios declines steeply with mass, and like the direct star counts, indicates that our companions follow a standard power law initial mass function. Again, this is in contrast to earlier findings of flat mass ratio distributions in OB associations. We excluded collision as a dominant formation mechanism but find no clear preference for core accretion or competitive accretion.Marie Skłodowska-Curie Grant AgreementFCT-PortugalERC Starting Gran
- …