2,557 research outputs found
Loading of bosons in optical lattices into the p band
We present a method for transferring bosonic atoms residing on the lowest
s-band of an optical lattice to the first excited p-bands. Our idea hinges on
resonant tunneling between adjacent sites of accelerated lattices. The
acceleration effectively shifts the quasi-bound energies on each site such that
the system can be cast into a Wannier-Stark ladder problem. By adjusting the
acceleration constant, a situation of resonant tunneling between the s- and
p-bands is achievable. Within a mean-field model, considering 87Rb atoms, we
demonstrate population transfer from the s- to the p-bands with around 95 %
efficiency. Nonlinear effects deriving from atom-atom interactions, as well as
coupling of the quasi bound Wannier-Stark states to the continuum, are
considered.Comment: 8 pages, 7 figure
TriCheck: Memory Model Verification at the Trisection of Software, Hardware, and ISA
Memory consistency models (MCMs) which govern inter-module interactions in a
shared memory system, are a significant, yet often under-appreciated, aspect of
system design. MCMs are defined at the various layers of the hardware-software
stack, requiring thoroughly verified specifications, compilers, and
implementations at the interfaces between layers. Current verification
techniques evaluate segments of the system stack in isolation, such as proving
compiler mappings from a high-level language (HLL) to an ISA or proving
validity of a microarchitectural implementation of an ISA.
This paper makes a case for full-stack MCM verification and provides a
toolflow, TriCheck, capable of verifying that the HLL, compiler, ISA, and
implementation collectively uphold MCM requirements. The work showcases
TriCheck's ability to evaluate a proposed ISA MCM in order to ensure that each
layer and each mapping is correct and complete. Specifically, we apply TriCheck
to the open source RISC-V ISA, seeking to verify accurate, efficient, and legal
compilations from C11. We uncover under-specifications and potential
inefficiencies in the current RISC-V ISA documentation and identify possible
solutions for each. As an example, we find that a RISC-V-compliant
microarchitecture allows 144 outcomes forbidden by C11 to be observed out of
1,701 litmus tests examined. Overall, this paper demonstrates the necessity of
full-stack verification for detecting MCM-related bugs in the hardware-software
stack.Comment: Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating System
Mini-Collagens in Hydra Nematocytes
We have isolated and characterized four collagen-related c-DNA clones (N-COL 1, N-COL 2, N-COL 3, N-COL 4) that are highly expressed in developing nematocytes in hydra. All four c-DNAs as well as their corresponding transcripts are small in size (600-1,000 bp). The deduced amino acid sequences show that they contain a central region consisting of 14 to 16 Gly-X-Y triplets. This region is flanked amino-terminal by a stretch of 14-23 proline residues and carboxy-terminal by a stretch of 6-9 prolines. At the NH2- and COOH-termini are repeated patterns of cysteine residues that are highly conserved between the molecules. A model is proposed which consists of a central stable collagen triple helix of 12-14 nm length from which three 9-22 nm long polyproline II type helices emerge at both ends. Disulfide linkage between cysteine- rich segments in these helices could lead to the formation of oligomeric network structures. Electrophoretic characterization of nematocyst extracts allows resolution of small proline-rich polypeptides that correspond in size to the cloned sequences
Urine peptidomic biomarkers for diagnosis of patients with systematic lupus erythematosus
Background:
Systematic lupus erythematosus (SLE) is characterized with various complications which can cause serious organ damage in the human body. Despite the significant improvements in disease management of SLE patients, the non-invasive diagnosis is entirely missing. In this study, we used urinary peptidomic biomarkers for early diagnosis of disease onset to improve patient risk stratification, vital for effective drug treatment.
Methods:
Urine samples from patients with SLE, lupus nephritis (LN) and healthy controls (HCs) were analyzed using capillary electrophoresis coupled to mass spectrometry (CE-MS) for state-of-the-art biomarker discovery.
Results:
A biomarker panel made up of 65 urinary peptides was developed that accurately discriminated SLE without renal involvement from HC patients. The performance of the SLE-specific panel was validated in a multicentric independent cohort consisting of patients without SLE but with different renal disease and LN. This resulted in an area under the receiver operating characteristic (ROC) curve (AUC) of 0.80 (p < 0.0001, 95% confidence interval (CI) 0.65–0.90) corresponding to a sensitivity and a specificity of 83% and 73%, respectively. Based on the end terminal amino acid sequences of the biomarker peptides, an in silico methodology was used to identify the proteases that were up or down-regulated. This identified matrix metalloproteinases (MMPs) as being mainly responsible for the peptides fragmentation.
Conclusions:
A laboratory-based urine test was successfully established for early diagnosis of SLE patients. Our approach determined the activity of several proteases and provided novel molecular information that could potentially influence treatment efficacy
Potential tree species extinction, colonization and recruitment in Afromontane forest relicts
Tree species regeneration determines future forest structure and composition, but is often severely hampered in small forest relicts. To study succession, long-term field observations or simulation models are used but data, knowledge or resources to run such models are often scarce in tropical areas. We propose and implement a species accounting equation, which includes the co-occurring events extinction, colonization and recruitment and which can be solved by using data from a single inventory. We solved this species accounting equation for the 12 remaining Afromontane cloud forest relicts in Taita Hills, Kenya by comparing the tree species present among the seedling, sapling and mature tree layer in 82 plots. A simultaneous ordination of the seedling, sapling and mature tree layer data revealed that potential species extinctions, colonizations and recruitments may induce future species shifts. On landscape level, the potential extinction debt amounted to 9% (7 species) of the regional species pool. On forest relict level, the smallest relicts harbored an important proportion of the tree species diversity in the regeneration layer. The average potential recruitment credit, defined as species only present as seedling or sapling, was 3 and 6 species for large and small forest relicts, while the average potential extinction debt was 12 and 4 species, respectively. In total, both large and small relicts are expected to lose approximately 20% of their current local tree species pool. The species accounting equations provide a time and resource effective tool and give an improved understanding of the conservation status and possible future succession dynamics of forest relicts, which can be particularly useful in a context of participatory monitoring
Global and Local Information in Traffic Congestion
A generic network flow model of transport (of relevance to information
transport as well as physical transport) is studied under two different control
protocols. The first involves information concerning the global state of the
network, the second only information about nodes' nearest neighbors. The global
protocol allows for a larger external drive before jamming sets in, at the
price of significant larger flow fluctuations. By triggering jams in
neighboring nodes, the jamming perturbation grows as a pulsating core. This
feature explains the different results for the two information protocols.Comment: 4 pages, 5 figures, preprint; corrected typos and minor format issue
Stretched exponential relaxation in a diffusive lattice model
We studied the single dimer dynamics in a lattice diffusive model as a
function of particle density in the high densification regime. The mean square
displacement is found to be subdiffusive both in one and two dimensions. The
spatial dependence of the self part of the van Hove correlation function
displays as function of a single peak and signals a dramatic slow down of
the system for high density. The self intermediate scattering function is
fitted to the Kohlrausch-Williams-Watts law. The exponent extracted
from the fits is density independent while the relaxation time follows a
scaling law with an exponent 2.5.Comment: 5 pages, 3 figures, to be published in Phys. Rev.
Correlations and pair emission in the escape dynamics of ions from one-dimensional traps
We explore the non-equilibrium escape dynamics of long-range interacting ions
in one-dimensional traps. The phase space of the few ion setup and its impact
on the escape properties are studied. As a main result we show that an
instantaneous reduction of the trap's potential depth leads to the synchronized
emission of a sequence of ion pairs if the initial configurations are close to
the crystalline ionic configuration. The corresponding time-intervals of the
consecutive pair emission as well as the number of emitted pairs can be tuned
by changing the final trap depth. Correlations between the escape times and
kinetic energies of the ions are observed and analyzed.Comment: 17 pages, 9 figure
Faba Bean (Vicia faba L.) Nodulating Rhizobia in Panxi, China, Are Diverse at Species, Plant Growth Promoting Ability, and Symbiosis Related Gene Levels
We isolated 65 rhizobial strains from faba bean (Vicia faba L.) from Panxi, China, studied their plant growth promoting ability with nitrogen free hydroponics, genetic diversity with clustered analysis of combined ARDRA and IGS-RFLP, and phylogeny by sequence analyses of 16S rRNA gene, three housekeeping genes and symbiosis related genes. Eleven strains improved the plant shoot dry mass significantly comparing to that of not inoculated plants. According to the clustered analysis of combined ARDRA and IGS-RFLP the isolates were genetically diverse. Forty-one of 65 isolates represented Rhizobium anhuiense, and the others belonged to R. fabae, Rhizobium vallis, Rhizobium sophorae, Agrobacterium radiobacter, and four species related to Rhizobium and Agrobacterium. The isolates carried four and five genotypes of nifH and nodC, respectively, in six different nifH-nodC combinations. When looking at the species-nifH-nodC combinations it is noteworthy that all but two of the six R. anhuiense isolates were different. Our results suggested that faba bean rhizobia in Panxi are diverse at species, plant growth promoting ability and symbiosis related gene levels.Peer reviewe
Brownian forces in sheared granular matter
We present results from a series of experiments on a granular medium sheared
in a Couette geometry and show that their statistical properties can be
computed in a quantitative way from the assumption that the resultant from the
set of forces acting in the system performs a Brownian motion. The same
assumption has been utilised, with success, to describe other phenomena, such
as the Barkhausen effect in ferromagnets, and so the scheme suggests itself as
a more general description of a wider class of driven instabilities.Comment: 4 pages, 5 figures and 1 tabl
- …