84 research outputs found

    Alignment and Aperture Scan at the Fermilab Booster

    Full text link
    The Fermilab booster has an intensity upgrade plan called the Proton Improvement plan (PIP). The flux throughput goal is 2E17 protons/hour, which is almost double the current operation at 1.1E17 protons/hour. The beam loss in the machine is going to be the source of issues. The booster accelerates beam from 400 MeV to 8 GeV and extracts to the Main Injector. Several percent of the beam is lost within 3 msec after the injection. The aperture at injection energy was measured and compared with the survey data. The magnets are going to be realigned in March 2012 in order to increase the aperture. The beam studies, analysis of the scan and alignment data, and the result of the magnet moves will be discussed in this paper.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster

    Full text link
    The Fermilab Booster - built more than 40 years ago - operates well above the design proton beam intensity of 4x10**12 ppp. Still, the Fermilab neutrino experiments call for even higher intensity of 5.5x10**12 ppp. A multitude of intensity related effects must be overcome in order to meet this goal including suppression of coherent dipole instabilities of transverse oscillations which manifest themselves as a sudden drop in the beam current. In this report we present the results of observation of these instabilities at different tune, coupling and chromaticity settings and discuss possible cures.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    An experimentally robust technique for halo measurement using the IPM at the Fermilab Booster

    Full text link
    We propose a model-independent quantity, L/GL/G, to characterize non-Gaussian tails in beam profiles observed with the Fermilab Booster Ion Profile Monitor. This quantity can be considered a measure of beam halo in the Booster. We use beam dynamics and detector simulations to demonstrate that L/GL/G is superior to kurtosis as an experimental measurement of beam halo when realistic beam shapes, detector effects and uncertainties are taken into account. We include the rationale and method of calculation for L/GL/G in addition to results of the experimental studies in the Booster where we show that L/GL/G is a useful halo discriminator

    Transition crossing simulation at the Fermilab Booster

    Get PDF
    The demand in high intensity and low emittance of the beam extracted from the Booster requires a better control over the momentum spread growth and bunch length shortening at transition crossing, in order to prevent beam loss and coupled bunch instability. Since the transition crossing involves both longitudinal and transverse dynamics, the recently modified 3-D STRUCT code provides an opportunity to numerically investigate the different transition crossing schemes in the machine environment, and apply the results of simulation to minimize the beam loss and emittance growth operationally
    • …
    corecore