4,452 research outputs found

    Field-dependent dynamics of the Anderson impurity model

    Full text link
    Single-particle dynamics of the Anderson impurity model in the presence of a magnetic field HH are considered, using a recently developed local moment approach that encompasses all energy scales, field and interaction strengths. For strong coupling in particular, the Kondo scaling regime is recovered. Here the frequency (ω/ωK\omega/\omega_{\rm K}) and field (H/ωKH/\omega_{\rm K}) dependence of the resultant universal scaling spectrum is obtained in large part analytically, and the field-induced destruction of the Kondo resonance investigated. The scaling spectrum is found to exhibit the slow logarithmic tails recently shown to dominate the zero-field scaling spectrum. At the opposite extreme of the Fermi level, it gives asymptotically exact agreement with results for statics known from the Bethe ansatz. Good agreement is also found with the frequency and field-dependence of recent numerical renormalization group calculations. Differential conductance experiments on quantum dots in the presence of a magnetic field are likewise considered; and appear to be well accounted for by the theory. Some new exact results for the problem are also established

    Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow

    Get PDF
    [1] We use observed CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February–April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions. The CO2/CO emission ratio varies with the source of CO2 (different combustion types versus the terrestrial biosphere) and provides a characteristic signature of source regions and source type. Observed CO2/CO correlation slopes in east Asian boundary layer outflow display distinct regional signatures ranging from 10–20 mol/mol (outflow from northeast China) to 80 mol/mol (over Japan). Model simulations using best a priori estimates of regional CO2 and CO sources from Streets et al. [2003] (anthropogenic), the CASA model (biospheric), and Duncan et al. [2003] (biomass burning) overestimate CO2 concentrations and CO2/CO slopes in the boundary layer outflow. Constraints from the CO2/CO slopes indicate that this must arise from an overestimate of the modeled regional net biospheric CO2 flux. Our corrected best estimate of the net biospheric source of CO2 from China for March–April 2001 is 3200 Gg C/d, which represents a 45 % reduction of the net flux from the CASA model. Previous analyses of the TRACE-P data had found that anthropogenic Chinese C

    Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics

    Full text link
    The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to the generic asymmetric model, encompassing all energy scales and interaction strengths and leading thereby to a rich description of the problem. We investigate in particular underlying phase boundaries, the critical behaviour of relevant low-energy scales, and single-particle dynamics embodied in the local spectrum. Particular attention is given to the resultant universal scaling behaviour of dynamics close to the transition in both the GFL and LM phases, the scale-free physics characteristic of the quantum critical point itself, and the relation between the two.Comment: 39 pages, 19 figure

    Spectral properties of a narrow-band Anderson model

    Full text link
    We consider single-particle spectra of a symmetric narrow-band Anderson impurity model, where the host bandwidth DD is small compared to the hybridization strength Δ0\Delta_{0}. Simple 2nd order perturbation theory (2PT) in UU is found to produce a rich spectral structure, that leads to rather good agreement with extant Lanczos results and offers a transparent picture of the underlying physics. It also leads naturally to two distinct regimes of spectral behaviour, Δ0Z/D1\Delta_{0}Z/D\gg 1 and 1\ll 1 (with ZZ the quasi-particle weight), whose existence and essential characteristics are discussed and shown to be independent of 2PT itself. The self-energy Σiω\Sigma_{i\omega} is also examined beyond the confines of PT. It is argued that on frequency scales of order ωDelta0D\omega\sim\sqrt{Delta_{0}D}, the self-energy in {\em strong} coupling is given precisely by the 2PT result, and we point out that the resultant poles in Σiω\Sigma_{i\omega} connect continuously to that characteristic of the atomic limit. This in turn offers a natural rationale for the known inability of the skeleton expansion to capture such behaviour, and points to the intrinsic dangers of partial infinite-order summations that are based on PT in UU.Comment: 10 pages, 2 Postscript figures, uses RevTex 3.1; accepted for publication in Phys. Rev. B1

    Mott-Hubbard transition in infinite dimensions

    Full text link
    We calculate the zero-temperature gap and quasiparticle weight of the half-filled Hubbard model with a random dispersion relation. After extrapolation to the thermodynamic limit, we obtain reliable bounds on these quantities for the Hubbard model in infinite dimensions. Our data indicate that the Mott-Hubbard transition is continuous, i.e., that the quasiparticle weight becomes zero at the same critical interaction strength at which the gap opens.Comment: 4 pages, RevTeX, 5 figures included with epsfig Final version for PRL, includes L=14 dat

    Decreased dopamine activity predicts relapse in methamphetamine abusers.

    Get PDF
    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [(11)C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes

    Collective excitation spectrum of a disordered Hubbard model

    Full text link
    We study the collective excitation spectrum of a d=3 site-disordered Anderson-Hubbard model at half-filling, via a random-phase approximation (RPA) about broken-symmetry, inhomogeneous unrestricted Hartree-Fock (UHF) ground states. We focus in particular on the density and character of low-frequency collective excitations in the transverse spin channel. In the absence of disorder, these are found to be spin-wave-like for all but very weak interaction strengths, extending down to zero frequency and separated from a Stoner-like band, to which there is a gap. With disorder present, a prominent spin-wave-like band is found to persist over a wide region of the disorder-interaction phase plane in which the mean-field ground state is a disordered antiferromagnet, despite the closure of the UHF single-particle gap. Site resolution of the RPA excitations leads to a microscopic rationalization of the evolution of the spectrum with disorder and interaction strength, and enables the observed localization properties to be interpreted in terms of the fraction of strong local moments and their site-differential distribution.Comment: 25 pages (revtex), 9 postscript figure

    Symmetric Anderson impurity model with a narrow band

    Full text link
    The single channel Anderson impurity model is a standard model for the description of magnetic impurities in metallic systems. Usually, the bandwidth represents the largest energy scale of the problem. In this paper, we analyze the limit of a narrow band, which is relevant for the Mott-Hubbard transition in infinite dimensions. For the symmetric model we discuss two different effects: i) The impurity contribution to the density of states at the Fermi surface always turns out to be negative in such systems. This leads to a new crossover in the thermodynamic quantities that we investigate using the numerical renormalization group. ii) Using the Lanczos method, we calculate the impurity spectral function and demonstrate the breakdown of the skeleton expansion on an intermediate energy scale. Luttinger's theorem, as an example of the local Fermi liquid property of the model, is shown to still be valid.Comment: 4 pages RevTeX, 2 eps figures included, final versio

    Connexin36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors

    Get PDF
    Large-scale synchronous firing of neurons during seizures is modulated by electrotonic coupling between neurons via gap junctions. To explore roles for connexin36 (Cx36) gap junctions in seizures, we examined the seizure threshold of connexin36 knockout (Cx36KO) mice using a pentylenetetrazol (PTZ) model
    corecore