6,459 research outputs found
ARCS, The Arcminute Radio Cluster-lens Search - I. Selection Criteria and Initial Results
We present the results of an unbiased radio search for gravitational lensing
events with image separations between 15 and 60 arcsec, which would be
associated with clusters of galaxies with masses >10^{13-14}M_{\sun}. A parent
population of 1023 extended radio sources stronger than 35 mJy with stellar
optical identifications was selected using the FIRST radio catalogue at 1.4 GHz
and the APM optical catalogue. The FIRST catalogue was then searched for
companions to the parent sources stronger than 7 mJy and with separation in the
range 15 to 60 arcsec. Higher resolution observations of the resulting 38 lens
candidates were made with the VLA at 1.4 GHz and 5 GHz, and with MERLIN at 5
GHz in order to test the lens hypothesis in each case. None of our targets was
found to be a gravitational lens system. These results provide the best current
constraint on the lensing rate for this angular scale, but improved
calculations of lensing rates from realistic simulations of the clustering of
matter on the relevant scales are required before cosmologically significant
constraints can be derived from this null result. We now have an efficient,
tested observational strategy with which it will be possible to make an
order-of-magnitude larger unbiased search in the near future.Comment: Accepted for publication in MNRAS. 12 pages, 29 included PostScript
figure
NICMOS and VLBA observations of the gravitational lens system B1933+503
NICMOS observations of the complex gravitational lens system B1933+503 reveal
infrared counterparts to two of the inverted spectrum radio images. The
infrared images have arc-like structures. The corresponding radio images are
also detected in a VLBA map made at 1.7 GHz with a resolution of 6 mas. We fail
to detect two of the four inverted radio spectrum components with the VLBA even
though they are clearly visible in a MERLIN map at the same frequency at a
different epoch. The absence of these two components could be due to rapid
variability on a time-scale less than the time delay, or to broadening of the
images during propagation of the radio waves through the ISM of the lensing
galaxy to an extent that they fall below the surface brightness detectability
threshold of the VLBA observations. The failure to detect the same two images
with NICMOS is probably due to extinction in the ISM of the lensing galaxy.Comment: 5 pages, 4 figures, submitted to MNRA
The Cosmic Lens All-Sky Survey parent population - I. Sample selection and number counts
We present the selection of the Jodrell Bank Flat-spectrum (JBF) radio source
sample, which is designed to reduce the uncertainties in the Cosmic Lens
All-Sky Survey (CLASS) gravitational lensing statistics arising from the lack
of knowledge about the parent population luminosity function. From observations
at 4.86 GHz with the Very Large Array, we have selected a sample of 117
flat-spectrum radio sources with flux densities greater than 5 mJy. These
sources were selected in a similar manner to the CLASS complete sample and are
therefore representative of the parent population at low flux densities. The
vast majority (~90 per cent) of the JBF sample are found to be compact on the
arcsecond scales probed here and show little evidence of any extended radio jet
emission. Using the JBF and CLASS complete samples we find the differential
number counts slope of the parent population above and below the CLASS 30 mJy
flux density limit to be -2.07+/-0.02 and -1.96+/-0.12, respectively.Comment: 10 pages, 4 figures, accepted for publication in MNRA
A survey of polarization in the JVAS/CLASS flat-spectrum radio source surveys: I. The data and catalogue production
We have used the very large JVAS/CLASS 8.4-GHz surveys of flat-spectrum radio
sources to obtain a large, uniformly observed and calibrated, sample of radio
source polarizations. These are useful for many investigations of the
properties of radio sources and the interstellar medium. We discuss comparisons
with polarization measurements from this survey and from other large-scale
surveys of polarization in flat-spectrum sources.Comment: Accepted by MNRAS. 8 pages, 5 figures. Full version of Table 2
available at http://www.jb.man.ac.uk/~njj/classqu_po
Gravitational lensing statistics with extragalactic surveys. II. Analysis of the Jodrell Bank-VLA Astrometric Survey
We present constraints on the cosmological constant from
gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey
(JVAS). Although this is the largest gravitational lens survey which has been
analysed, cosmological constraints are only comparable to those from optical
surveys. This is due to the fact that the median source redshifts of JVAS are
lower, which leads to both relatively fewer lenses in the survey and a weaker
dependence on the cosmological parameters. Although more approximations have to
be made than is the case for optical surveys, the consistency of the results
with those from optical gravitational lens surveys and other cosmological tests
indicate that this is not a major source of uncertainty in the results.
However, joint constraints from a combination of radio and optical data are
much tighter. Thus, a similar analysis of the much larger Cosmic Lens All-Sky
Survey should provide even tighter constraints on the cosmological constant,
especially when combined with data from optical lens surveys.
At 95% confidence, our lower and upper limits on ,
using the JVAS lensing statistics information alone, are respectively -2.69 and
0.68. For a flat universe, these correspond to lower and upper limits on
\lambda_{0} of respectively -0.85 and 0.84. Using the combination of JVAS
lensing statistics and lensing statistics from the literature as discussed in
Quast & Helbig (Paper I) the corresponding values are
-1.78 and 0.27. For a flat universe, these correspond to lower and upper limits
on of respectively -0.39 and 0.64.Comment: LaTeX, 9 pages, 18 PostScript files in 6 figures. Paper version
available on request. Data available from
http://gladia.astro.rug.nl:8000/ceres/data_from_papers/papers.htm
MERLIN/VLA imaging of the gravitational lens system B0218+357
Gravitational lenses offer the possibility of accurately determining the
Hubble parameter (H_0) over cosmological distances, and B0218+357 is one of the
most promising systems for an application of this technique. In particular this
system has an accurately measured time delay (10.5+/-0.4 d; Biggs et al. 1999)
and preliminary mass modelling has given a value for H_0 of 69 +13/-19
km/s/Mpc. The error on this estimate is now dominated by the uncertainty in the
mass modelling. As this system contains an Einstein ring it should be possible
to constrain the model better by imaging the ring at high resolution. To
achieve this we have combined data from MERLIN and the VLA at a frequency of 5
GHz. In particular MERLIN has been used in multi-frequency mode in order to
improve substantially the aperture coverage of the combined data set. The
resulting map is the best that has been made of the ring and contains many new
and interesting features. Efforts are currently underway to exploit the new
data for lensing constraints using the LensClean algorithm (Kochanek & Narayan
1992).Comment: Accepted for publication in MNRAS. 6 pages, 4 included PostScript
figure
- âŠ