498 research outputs found
A Demographic Approach to Race and Ethnicity in Metropolitan and Non-Metropolitan Regions of Arkansas, 1990 and 1999
This manuscript provides an empirical portrait of emergent trends in the growth, distribution, and racial and ethnic composition of Arkansas’ resident population. Particular attention is given to variation in the racial and ethnic composition of the estimated population among different regions of the state. During the 1990’s, racial and ethnic diversity increased statewide due in large part to Hispanic population growth in all regions. Black population growth was greatest in central Arkansas while Asian and Native American population growth increased most rapidly in the northwest metropolitan regions of the state. Overall, both metropolitan and non-metropolitan Arkansas communities have a more diverse mix of ethnic populations than has been known in the past
Stretching and mixing of non-Newtonian fluids in time-periodic flows
The stretching of fluid elements and the dynamics of mixing are studied for a variety of polymer solutions in nearly two-dimensional magnetically driven flows, in order to distinguish between the effects of viscoelasticity and shear thinning. Viscoelasticity alone is found to suppress stretching and mixing mildly, in agreement with some previous experiments on time-periodic flows. On the other hand, the presence of shear thinning viscosity (especially when coupled with elasticity) produces a dramatic enhancement in stretching and mixing compared to a Newtonian solution at the same Reynolds number. In order to understand this observation, we study the velocity field separately in the sheared and elongational regions of the flow for various polymer solutions. We demonstrate that the enhancement is accompanied by a breaking of time-reversal symmetry of the particle trajectories, on the average. Finally, we discuss possible causes for the time lags leading to this temporal symmetry breaking, and the resulting enhanced mixing
Fluid Particle Accelerations in Fully Developed Turbulence
The motion of fluid particles as they are pushed along erratic trajectories
by fluctuating pressure gradients is fundamental to transport and mixing in
turbulence. It is essential in cloud formation and atmospheric transport,
processes in stirred chemical reactors and combustion systems, and in the
industrial production of nanoparticles. The perspective of particle
trajectories has been used successfully to describe mixing and transport in
turbulence, but issues of fundamental importance remain unresolved. One such
issue is the Heisenberg-Yaglom prediction of fluid particle accelerations,
based on the 1941 scaling theory of Kolmogorov (K41). Here we report
acceleration measurements using a detector adapted from high-energy physics to
track particles in a laboratory water flow at Reynolds numbers up to 63,000. We
find that universal K41 scaling of the acceleration variance is attained at
high Reynolds numbers. Our data show strong intermittency---particles are
observed with accelerations of up to 1,500 times the acceleration of gravity
(40 times the root mean square value). Finally, we find that accelerations
manifest the anisotropy of the large scale flow at all Reynolds numbers
studied.Comment: 7 pages, 4 figure
Semiclassical time evolution of the density matrix and tunneling
The time dependent density matrix of a system with potential barrier is
studied using path integrals. The characterization of the initial state, which
is assumed to be restricted to one side of the barrier, and the time evolution
of the density matrix lead to a three-fold path integral which is evaluated in
the semiclassical limit. The semiclassical trajectories are found to move in
the complex coordinate plane and barrier penetration only arises due to
fluctuations. Both the form of the semiclassical paths and the relevant
fluctuations change significantly as a function of temperature. The
semiclassical analysis leads to a detailed picture of barrier penetration in
the real time domain and the changeover from thermal activation to quantum
tunneling. Deep tunneling is associated with quasi-zero modes in the
fluctuation spectrum about the semiclassical orbits in the long time limit. The
connection between this real time description of tunneling and the standard
imaginary time instanton approach is established. Specific results are given
for a double well potential and an Eckart barrier.Comment: 27 pages, 8 figures, to be published in Phys. Rev.
Recommended from our members
An engineering model to simulate the thermal response of electronic devices during pulsed Nd:YAG laser welding
A model is developed to predict the thermal response of real electronic devices during pulsed Nd:YAG laser welding. Modeling laser-part interaction requires incorporation of weld pool hydrodynamics, and laser-metal vapor and laser-surface interactions. Although important information can be obtained from these models, they are not appropriate for use in design of actual components due to computational limitations. In lieu of solving for these detailed physics, a simple model is constructed. In this model, laser-part interactions are accounted for through an empirically determined energy transfer efficiency which is developed through the use of modeling and experiments. This engineering model is appropriate since part thermal response near the weld pool and weld pool shape is not of interest here. Reasonable agreement between predictions and experimental measurements for welding of real components are indicated
Floquet-Markov description of the parametrically driven, dissipative harmonic quantum oscillator
Using the parametrically driven harmonic oscillator as a working example, we
study two different Markovian approaches to the quantum dynamics of a
periodically driven system with dissipation. In the simpler approach, the
driving enters the master equation for the reduced density operator only in the
Hamiltonian term. An improved master equation is achieved by treating the
entire driven system within the Floquet formalism and coupling it to the
reservoir as a whole. The different ensuing evolution equations are compared in
various representations, particularly as Fokker-Planck equations for the Wigner
function. On all levels of approximation, these evolution equations retain the
periodicity of the driving, so that their solutions have Floquet form and
represent eigenfunctions of a non-unitary propagator over a single period of
the driving. We discuss asymptotic states in the long-time limit as well as the
conservative and the high-temperature limits. Numerical results obtained within
the different Markov approximations are compared with the exact path-integral
solution. The application of the improved Floquet-Markov scheme becomes
increasingly important when considering stronger driving and lower
temperatures.Comment: 29 pages, 7 figure
Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment
The prediction of the equation of state and the phase behavior of simple
fluids (noble gases, carbon dioxide, benzene, methane, short alkane chains) and
their mixtures by Monte Carlo computer simulation and analytic approximations
based on thermodynamic perturbation theory is discussed. Molecules are
described by coarse grained (CG) models, where either the whole molecule
(carbon dioxide, benzene, methane) or a group of a few successive CH_2 groups
(in the case of alkanes) are lumped into an effective point particle.
Interactions among these point particles are fitted by Lennard-Jones (LJ)
potentials such that the vapor-liquid critical point of the fluid is reproduced
in agreement with experiment; in the case of quadrupolar molecules a
quadrupole-quadrupole interaction is included. These models are shown to
provide a satisfactory description of the liquid-vapour phase diagram of these
pure fluids. Investigations of mixtures, using the Lorentz-Berthelot (LB)
combining rule, also produce satisfactory results if compared with experiment,
while in some previous attempts (in which polar solvents were modelled without
explicitly taking into account quadrupolar interaction), strong violations of
the LB rules were required. For this reason, the present investigation is a
step towards predictive modelling of polar mixtures at low computational cost.
These very simple coarse-grained models of small molecules developed here
should be useful e.g. for simulations of polymer solutions with such molecules
as solvent.Comment: J. Chem. Phys., accepte
Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores.
Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We have optimized methods for large scale production and purification of spores. The germination characteristics of purified spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (p≤0.01). A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes its metabolism, re-builds the basic structures of the vegetative cell and resumes growth
- …