6,644 research outputs found
Projection Measurement of the Maximally Entangled N-Photon State for a Demonstration of N-Photon de Broglie Wavelength
We construct a projection measurement process for the maximally entangled
N-photon state (the NOON-state) with only linear optical elements and
photodetectors. This measurement process will give null result for any N-photon
state that is orthogonal to the NOON state. We examine the projection process
in more detail for N=4 by applying it to a four-photon state from type-II
parametric down-conversion. This demonstrates an orthogonal projection
measurement with a null result. This null result corresponds to a dip in a
generalized Hong-Ou-Mandel interferometer for four photons. We find that the
depth of the dip in this arrangement can be used to distinguish a genuine
entangled four-photon state from two separate pairs of photons. We next apply
the NOON state projection measurement to a four-photon superposition state from
two perpendicularly oriented type-I parametric down-conversion processes. A
successful NOON state projection is demonstrated with the appearance of the
four-photon de Broglie wavelength in the interference fringe pattern.Comment: 8 pages, 3 figures, new title, some content change, replaced Fig.
An all fiber source of frequency entangled photon pairs
We present an all fiber source of frequency entangled photon pairs by using
four wave mixing in a Sagnac fiber loop. Special care is taken to suppress the
impurity of the frequency entanglement by cooling the fiber and by matching the
polarization modes of the photon pairs counter-propagating in the fiber loop.
Coincidence detection of signal and idler photons, which are created in pair
and in different spatial modes of the fiber loop, shows the quantum
interference in the form of spatial beating, while the single counts of the
individual signal (idler) photons keep constant. When the production rate of
photon pairs is about 0.013 pairs/pulse, the envelope of the quantum
interference reveals a visibility of , which is close to the
calculated theoretical limit 97.4%Comment: 11 pages, 6 figures, to appear in Phys. Rev.
New Approach on the General Shape Equation of Axisymmetric Vesicles
The general Helfrich shape equation determined by minimizing the curvature
free energy describes the equilibrium shapes of the axisymmetric lipid bilayer
vesicles in different conditions. It is a non-linear differential equation with
variable coefficients. In this letter, by analyzing the unique property of the
solution, we change this shape equation into a system of the two differential
equations. One of them is a linear differential equation. This equation system
contains all of the known rigorous solutions of the general shape equation. And
the more general constraint conditions are found for the solution of the
general shape equation.Comment: 8 pages, LaTex, submit to Mod. Phys. Lett.
Capture on High Curvature Region: Aggregation of Colloidal Particle Bound to Giant Phospholipid Vesicles
A very recent observation on the membrane mediated attraction and ordered
aggregation of colloidal particles bound to giant phospholipid vesicles (I.
Koltover, J. O. R\"{a}dler, C. R. Safinya, Phys. Rev. Lett. {\bf 82},
1991(1999)) is investigated theoretically within the frame of Helfrich
curvature elasticity theory of lipid bilayer fluid membrane. Since the concave
or waist regions of the vesicle possess the highest local bending energy
density, the aggregation of colloidal beads on these places can reduce the
elastic energy in maximum. Our calculation shows that a bead in the concave
region lowers its energy . For an axisymmetrical dumbbell
vesicle, the local curvature energy density along the waist is equally of
maximum, the beads can thus be distributed freely with varying separation
distance.Comment: 12 pages, 2 figures. REVte
Detection of sequential polyubiquitylation on a millisecond timescale
The pathway by which ubiquitin chains are generated on substrate through a cascade of enzymes consisting of an E1, E2 and E3 remains unclear. Multiple distinct models involving chain assembly on E2 or substrate have been proposed. However, the speed and complexity of the reaction have precluded direct experimental tests to distinguish between potential pathways. Here we introduce new theoretical and experimental methodologies to address both limitations. A quantitative framework based on product distribution predicts that the really interesting new gene (RING) E3 enzymes SCF^(Cdc4) and SCF^(β-TrCP) work with the E2 Cdc34 to build polyubiquitin chains on substrates by sequential transfers of single ubiquitins. Measurements with millisecond time resolution directly demonstrate that substrate polyubiquitylation proceeds sequentially. Our results present an unprecedented glimpse into the mechanism of RING ubiquitin ligases and illuminate the quantitative parameters that underlie the rate and pattern of ubiquitin chain assembly
Possible effects of tilt order on phase transitions of a fixed connectivity surface model
We study the phase structure of a phantom tethered surface model shedding
light on the internal degrees of freedom (IDOF), which correspond to the
three-dimensional rod like structure of the lipid molecules. The so-called tilt
order is assumed as IDOF on the surface model. The model is defined by
combining the conventional spherical surface model and the XY model, which
describes not only the interaction between lipids but also the interaction
between the lipids and the surface. The interaction strength between IDOF and
the surface varies depending on the interaction strength between the variables
of IDOF. We know that the model without IDOF undergoes a first-order transition
of surface fluctuations and a first-order collapsing transition. We observe in
this paper that the order of the surface fluctuation transition changes from
first-order to second-order and to higher-order with increasing strength of the
interaction between IDOF variables. On the contrary, the order of collapsing
transition remains first-order and is not influenced by the presence of IDOF.Comment: 20 pages, 14 figure
Study of axial strain induced torsion of single wall carbon nanotubes by 2D continuum anharmonic anisotropic elastic model
Recent molecular dynamic simulations have found chiral single wall carbon
nanotubes (SWNTs) twist during stretching, which is similar to the motion of a
screw. Obviously this phenomenon, as a type of curvature-chirality effect, can
not be explained by usual isotropic elastic theory of SWNT. More interestingly,
with larger axial strains (before buckling), the axial strain induced torsion
(a-SIT) shows asymmetric behaviors for axial tensile and compressing strains,
which suggests anharmonic elasticity of SWNTs plays an important role in real
a-SIT responses. In order to study the a-SIT of chiral SWNTs with actual sizes,
and avoid possible deviations of computer simulation results due to the
finite-size effect, we propose a 2D analytical continuum model which can be
used to describe the the SWNTs of arbitrary chiralities, curvatures, and
lengths, with the concerning of anisotropic and anharmonic elasticity of SWNTs.
This elastic energy of present model comes from the continuum limit of lattice
energy based on Second Generation Reactive Empirical Bond Order potential
(REBO-II), a well-established empirical potential for solid carbons. Our model
has no adjustable parameters, except for those presented in REBO-II, and all
the coefficients in the model can be calculated analytically. Using our method,
we obtain a-SIT responses of chiral SWNTs with arbitrary radius, chiralities
and lengthes. Our results are in reasonable agreement with recent molecular
dynamic simulations. [Liang {\it et. al}, Phys. Rev. Lett, , 165501
(2006).] Our approach can also be used to calculate other curvature-chirality
dependent anharmonic mechanic responses of SWNTs.Comment: 14 pages, 2 figure
- …