1,086 research outputs found

    Raman cooling and heating of two trapped Ba+ ions

    Get PDF
    We study cooling of the collective vibrational motion of two 138Ba+ ions confined in an electrodynamic trap and irradiated with laser light close to the resonances S_1/2-P_1/2 (493 nm) and P_1/2-D_3/2 (650 nm). The motional state of the ions is monitored by a spatially resolving photo multiplier. Depending on detuning and intensity of the cooling lasers, macroscopically different motional states corresponding to different ion temperatures are observed. We also derive the ions' temperature from detailed analytical calculations of laser cooling taking into account the Zeeman structure of the energy levels involved. The observed motional states perfectly match the calculated temperatures. Significant heating is observed in the vicinity of the dark resonances of the Zeeman-split S_1/2-D_3/2 Raman transitions. Here two-photon processes dominate the interaction between lasers and ions. Parameter regimes of laser light are identified that imply most efficient laser cooling.Comment: 8 pages, 5 figure

    Star formation environments and the distribution of binary separations

    Get PDF
    We have carried out K-band speckle observations of a sample of 114 X-ray selected weak-line T Tauri stars in the nearby Scorpius-Centaurus OB association. We find that for binary T Tauri stars closely associated to the early type stars in Upper Scorpius, the youngest subgroup of the OB association, the peak in the distribution of binary separations is at 90 A.U. For binary T Tauri stars located in the direction of an older subgroup, but not closely associated to early type stars, the peak in the distribution is at 215 A.U. A Kolmogorov-Smirnov test indicates that the two binary populations do not result from the same distibution at a significance level of 98%. Apparently, the same physical conditions which facilitate the formation of massive stars also facilitate the formation of closer binaries among low-mass stars, whereas physical conditions unfavorable for the formation of massive stars lead to the formation of wider binaries among low-mass stars. The outcome of the binary formation process might be related to the internal turbulence and the angular momentum of molecular cloud cores, magnetic field, the initial temperature within a cloud, or - most likely - a combination of all of these. We conclude that the distribution of binary separations is not a universal quantity, and that the broad distribution of binary separations observed among main-sequence stars can be explained by a superposition of more peaked binary distributions resulting from various star forming environments. The overall binary frequency among pre-main-sequence stars in individual star forming regions is not necessarily higher than among main-sequence stars.Comment: 7 pages, Latex, 4 Postscript figures; also available at http://spider.ipac.caltech.edu/staff/brandner/pubs/pubs.html ; accepted for publication in ApJ Letter

    A Simplified Approach to Optimally Controlled Quantum Dynamics

    Get PDF
    A new formalism for the optimal control of quantum mechanical physical observables is presented. This approach is based on an analogous classical control technique reported previously[J. Botina, H. Rabitz and N. Rahman, J. chem. Phys. Vol. 102, pag. 226 (1995)]. Quantum Lagrange multiplier functions are used to preserve a chosen subset of the observable dynamics of interest. As a result, a corresponding small set of Lagrange multipliers needs to be calculated and they are only a function of time. This is a considerable simplification over traditional quantum optimal control theory[S. shi and H. Rabitz, comp. Phys. Comm. Vol. 63, pag. 71 (1991)]. The success of the new approach is based on taking advantage of the multiplicity of solutions to virtually any problem of quantum control to meet a physical objective. A family of such simplified formulations is introduced and numerically tested. Results are presented for these algorithms and compared with previous reported work on a model problem for selective unimolecular reaction induced by an external optical electric field.Comment: Revtex, 29 pages (incl. figures

    Error-resistant Single Qubit Gates with Trapped Ions

    Get PDF
    Coherent operations constitutive for the implementation of single and multi-qubit quantum gates with trapped ions are demonstrated that are robust against variations in experimental parameters and intrinsically indeterministic system parameters. In particular, pulses developed using optimal control theory are demonstrated for the first time with trapped ions. Their performance as a function of error parameters is systematically investigated and compared to composite pulses.Comment: 5 pages 5 figure

    Hudson's Theorem for finite-dimensional quantum systems

    Full text link
    We show that, on a Hilbert space of odd dimension, the only pure states to possess a non-negative Wigner function are stabilizer states. The Clifford group is identified as the set of unitary operations which preserve positivity. The result can be seen as a discrete version of Hudson's Theorem. Hudson established that for continuous variable systems, the Wigner function of a pure state has no negative values if and only if the state is Gaussian. Turning to mixed states, it might be surmised that only convex combinations of stabilizer states give rise to non-negative Wigner distributions. We refute this conjecture by means of a counter-example. Further, we give an axiomatic characterization which completely fixes the definition of the Wigner function and compare two approaches to stabilizer states for Hilbert spaces of prime-power dimensions. In the course of the discussion, we derive explicit formulas for the number of stabilizer codes defined on such systems.Comment: 17 pages, 3 figures; References updated. Title changed to match published version. See also quant-ph/070200

    ROSAT X-ray Spectral Properties of Nearby Young Associations: TW Hydrae, Tucana-Horologium, and the beta Pic Moving Group

    Get PDF
    We present archival ROSAT data for three recently identified, nearby (D<70 pc), young (~10-40 Myr) stellar associations: the TW Hydrae Association, the Tucana-Horologium Association, and the beta Pic Moving Group. The distributions of ROSAT X-ray hardness ratios (HR1, HR2) for these three groups, whose membership is dominated by low-mass, weak-lined T Tauri stars, are tightly clustered and very similar to one another. The value of HR1 for TW Hya itself -- the only bona fide classical T Tauri star in any of the nearby groups -- is clearly anomalous among these nearby young stars. We compare the hardness ratio distributions of stars in the three nearby groups with those of T Tauri stars, the Hyades, and main sequence dwarfs in the field. This comparison demonstrates that the X-ray spectra of F through M stars soften with age, and that F and G stars evolve more rapidly in X-ray spectral hardness than do K and M stars. It is as yet unclear whether this trend can be attributed to age-dependent changes in the intrinsic X-ray spectra of stars of type F and later, to a decrease in the column density of circumstellar gas (e.g., in residual protoplanetary disks), or to the diminishing contributions of star-disk interactions to X-ray emission. Regardless, these results demonstrate that analysis of archival ROSAT X-ray spectral data can help both to identify nearby, young associations and to ascertain the X-ray emission properties of members of known associations.Comment: 17 pages, 4 figures; accepted by the Astrophysical Journa
    corecore