18,433 research outputs found

    Effect of high-K dielectrics on charge transport in graphene

    Full text link
    The effect of various dielectrics on charge mobility in single layer graphene is investigated. By calculating the remote optical phonon scattering arising from the polar substrates, and combining it with their effect on Coulombic impurity scattering, a comprehensive picture of the effect of dielectrics on charge transport in graphene emerges. It is found that though high-κ\kappa dielectrics can strongly reduce Coulombic scattering by dielectric screening, scattering from surface phonon modes arising from them wash out this advantage. By comparing the room-temperature transport properties with narrow-bandgap III-V semiconductors, strategies to improve the mobility in single layer graphene are outlined.Comment: 6 pages, 4 Figure

    Superconducting correlations in ultra-small metallic grains

    Full text link
    To describe the crossover from the bulk BCS superconductivity to a fluctuation-dominated regime in ultrasmall metallic grains, new order parameters and correlation functions, such as ``parity gap'' and ``pair-mixing correlation function'', have been recently introduced. In this paper, we discuss the small-grain behaviour of the Penrose-Onsager-Yang off-diagonal long-range order (ODLRO) parameter in a pseudo-spin representation. Relations between the ODLRO parameter and those mentioned above are established through analytical and numerical calculations.Comment: 7 pages, 1 figur

    Heat capacity anomaly at the quantum critical point of the Transverse Ising Magnet CoNb_2O_6

    Full text link
    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2_2O6_6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. We ask if there are low-lying spin excitations distinct from these relatively high energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30%\% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected, by the quantum transition.Comment: 14 pages total, 8 figure

    Suppression of superconductivity in nanowires by bulk superconductors

    Full text link
    Transport measurements were made on a system consisting of a zinc nanowire array sandwiched between two bulk superconducting electrodes (Sn or In). It was found that the superconductivity of Zn nanowires of 40 nm diameter is suppressed either completely or partially by the superconducting electrodes. When the electrodes are driven into their normal state by a magnetic field, the nanowires switch back to their superconducting state. This phenomenon is significantly weakened when one of the two superconducting electrodes is replaced by a normal metal. The phenomenon is not seen in wires with diameters equal to and thicker than 70 nm.Comment: 4 pages, 5 figure
    • …
    corecore