1,608 research outputs found
Ellipticity Conditions for the Lax Operator of the KP Equations
The Lax pseudo-differential operator plays a key role in studying the general
set of KP equations, although it is normally treated in a formal way, without
worrying about a complete characterization of its mathematical properties. The
aim of the present paper is therefore to investigate the ellipticity condition.
For this purpose, after a careful evaluation of the kernel with the associated
symbol, the majorization ensuring ellipticity is studied in detail. This leads
to non-trivial restrictions on the admissible set of potentials in the Lax
operator. When their time evolution is also considered, the ellipticity
conditions turn out to involve derivatives of the logarithm of the
tau-function.Comment: 21 pages, plain Te
The hybrid spectral problem and Robin boundary conditions
The hybrid spectral problem where the field satisfies Dirichlet conditions
(D) on part of the boundary of the relevant domain and Neumann (N) on the
remainder is discussed in simple terms. A conjecture for the C_1 coefficient is
presented and the conformal determinant on a 2-disc, where the D and N regions
are semi-circles, is derived. Comments on higher coefficients are made.
A hemisphere hybrid problem is introduced that involves Robin boundary
conditions and leads to logarithmic terms in the heat--kernel expansion which
are evaluated explicitly.Comment: 24 pages. Typos and a few factors corrected. Minor comments added.
Substantial Robin additions. Substantial revisio
Non-Local Boundary Conditions in Euclidean Quantum Gravity
Non-local boundary conditions for Euclidean quantum gravity are proposed,
consisting of an integro-differential boundary operator acting on metric
perturbations. In this case, the operator P on metric perturbations is of
Laplace type, subject to non-local boundary conditions; by contrast, its
adjoint is the sum of a Laplacian and of a singular Green operator, subject to
local boundary conditions. Self-adjointness of the boundary-value problem is
correctly formulated by looking at Dirichlet-type and Neumann-type realizations
of the operator P, following recent results in the literature. The set of
non-local boundary conditions for perturbative modes of the gravitational field
is written in general form on the Euclidean four-ball. For a particular choice
of the non-local boundary operator, explicit formulae for the boundary-value
problem are obtained in terms of a finite number of unknown functions, but
subject to some consistency conditions. Among the related issues, the problem
arises of whether non-local symmetries exist in Euclidean quantum gravity.Comment: 23 pages, plain Tex. The revised version is much longer, and new
original calculations are presented in section
Wage returns to university disciplines in Greece: are Greek Higher Education degrees Trojan Horses?
This paper examines the wage returns to qualifications and academic disciplines in the Greek labour market. Exploring wage responsiveness across various degree subjects in Greece is interesting, as it is characterised by high levels of graduate unemployment, which vary considerably by field of study, and relatively low levels of wage flexibility. Using micro-data from recently available waves (2002-2003) of the Greek Labour Force Survey (LFS), the returns to academic disciplines are estimated by gender and public/private sector. Quantile regressions and cohort interactions are also used to capture the heterogeneity in wage returns across the various disciplines. The results show considerable variation in wage premiums across the fields of study, with lower returns for those that have a marginal role to play in an economy with a rising services/shrinking public sector. Educational reforms that pay closer attention to the future prospects of university disciplines are advocated
Klein-Gordon Solutions on Non-Globally Hyperbolic Standard Static Spacetimes
We construct a class of solutions to the Cauchy problem of the Klein-Gordon
equation on any standard static spacetime. Specifically, we have constructed
solutions to the Cauchy problem based on any self-adjoint extension (satisfying
a technical condition: "acceptability") of (some variant of) the
Laplace-Beltrami operator defined on test functions in an -space of the
static hypersurface. The proof of the existence of this construction completes
and extends work originally done by Wald. Further results include the
uniqueness of these solutions, their support properties, the construction of
the space of solutions and the energy and symplectic form on this space, an
analysis of certain symmetries on the space of solutions and of various
examples of this method, including the construction of a non-bounded below
acceptable self-adjoint extension generating the dynamics
New Kernels in Quantum Gravity
Recent work in the literature has proposed the use of non-local boundary
conditions in Euclidean quantum gravity. The present paper studies first a more
general form of such a scheme for bosonic gauge theories, by adding to the
boundary operator for mixed boundary conditions of local nature a two-by-two
matrix of pseudo-differential operators with pseudo-homogeneous kernels. The
request of invariance of such boundary conditions under infinitesimal gauge
transformations leads to non-local boundary conditions on ghost fields. In
Euclidean quantum gravity, an alternative scheme is proposed, where non-local
boundary conditions and the request of their complete gauge invariance are
sufficient to lead to gauge-field and ghost operators of pseudo-differential
nature. The resulting boundary conditions have a Dirichlet and a
pseudo-differential sector, and are pure Dirichlet for the ghost. This approach
is eventually extended to Euclidean Maxwell theory.Comment: 19 pages, plain Tex. In this revised version, section 5 is new,
section 3 is longer, and the presentation has been improve
An approach for the calculation of one-loop effective actions, vacuum energies, and spectral counting functions
In this paper, we provide an approach for the calculation of one-loop
effective actions, vacuum energies, and spectral counting functions and discuss
the application of this approach in some physical problems. Concretely, we
construct the equations for these three quantities; this allows us to achieve
them by directly solving equations. In order to construct the equations, we
introduce shifted local one-loop effective actions, shifted local vacuum
energies, and local spectral counting functions. We solve the equations of
one-loop effective actions, vacuum energies, and spectral counting functions
for free massive scalar fields in , scalar fields in
three-dimensional hyperbolic space (the Euclidean Anti-de Sitter space
), in (the geometry of the Euclidean BTZ black hole), and in
, and the Higgs model in a -dimensional finite interval.
Moreover, in the above cases, we also calculate the spectra from the counting
functions. Besides exact solutions, we give a general discussion on approximate
solutions and construct the general series expansion for one-loop effective
actions, vacuum energies, and spectral counting functions. In doing this, we
encounter divergences. In order to remove the divergences, renormalization
procedures are used. In this approach, these three physical quantities are
regarded as spectral functions in the spectral problem.Comment: 37 pages, no figure. This is an enlarged and improved version of the
paper published in JHE
- …