572 research outputs found

    Sparling two-forms, the conformal factor and the gravitational energy density of the teleparallel equivalent of general relativity

    Full text link
    It has been shown recently that within the framework of the teleparallel equivalent of general relativity (TEGR) it is possible to define the energy density of the gravitational field. The TEGR amounts to an alternative formulation of Einstein's general relativity, not to an alternative gravity theory. The localizability of the gravitational energy has been investigated in a number of space-times with distinct topologies, and the outcome of these analises agree with previously known results regarding the exact expression of the gravitational energy, and/or with the specific properties of the space-time manifold. In this article we establish a relationship between the expression for the gravitational energy density of the TEGR and the Sparling two-forms, which are known to be closely connected with the gravitational energy. We also show that our expression of energy yields the correct value of gravitational mass contained in the conformal factor of the metric field.Comment: 12 pages, Latex file, no figures, to be published in Gen. Rel. Gra

    The Teleparallel Equivalent of General Relativity and the Gravitational Centre of Mass

    Full text link
    We present a brief review of the teleparallel equivalent of general relativity and analyse the expression for the centre of mass density of the gravitational field. This expression has not been sufficiently discussed in the literature. One motivation for the present analysis is the investigation of the localization of dark energy in the three-dimensional space, induced by a cosmological constant in a simple Schwarzschild-de Sitter space-time. We also investigate the gravitational centre of mass density in a particular model of dark matter, in the space-time of a point massive particle and in an arbitrary space-time with axial symmetry. The results are plausible, and lead to the notion of gravitational centre of mass (COM) distribution function.Comment: 22 pages, no figures, the title has been changed, references added, published in Universe (100 Years of Chronogeometrodynamics: the Status of the Einstein's Theory of Gravitation in Its Centennial Year

    Regularized expression for the gravitational energy-momentum in teleparallel gravity and the principle of equivalence

    Full text link
    The expression of the gravitational energy-momentum defined in the context of the teleparallel equivalent of general relativity is extended to an arbitrary set of real-valued tetrad fields, by adding a suitable reference space subtraction term. The characterization of tetrad fields as reference frames is addressed in the context of the Kerr space-time. It is also pointed out that Einstein's version of the principle of equivalence does not preclude the existence of a definition for the gravitational energy-momentum density.Comment: 17 pages, Latex file, no figure; minor correction in eq. (14), three references added, to appear in the GRG Journa

    Localization of Energy in General Relativity

    Get PDF
    In the framework of the teleparallel equivalent of general relativity the energy density of asymptoticaly flat gravitational fields can be naturally and unambiguously defined. Upon integration of the energy density over the whole three dimensional space we obtain the ADM energy. We use this energy density to calculate the energy inside a Schwarzschild black hole.Comment: 12 pages, LaTex file, no figure

    Gravitational energy of conical defects

    Get PDF
    The energy density of asymptotically flat gravitational fields can be calculated from a simple expression involving the trace of the torsion tensor. Integration of this energy density over the whole space yields the ADM energy. Such expression can be justified within the framework of the teleparallel equivalent of general relativity, which is an alternative geometrical formulation of Einstein's general relativity. In this paper we apply this energy density to the evaluation of the energy per unit length of a class of conical defects of topological nature, which include disclinations and dislocations (in the terminology of crystallography). Disclinations correspond to cosmic strings, and for a spacetime endowed with only such a defect we obtain precisely the well known expression of energy per unit length. However for a pure spacetime dislocation the total gravitational energy is zero.Comment: 16 pages, LaTex file, no figure, additional text included, to appear in the J. Math. Phy

    Canonical Formulation of Gravitational Teleparallelism in 2+1 Dimensions in Schwinger's Time Gauge

    Full text link
    We consider the most general class of teleparallel gravitational {}{}theories quadratic in the torsion tensor, in three space-time dimensions, and carry out a detailed investigation of its Hamiltonian formulation in Schwinger's time gauge. This general class is given by a family of three-parameter theories. A consistent implementation of the Legendre transform reduces the original theory to a one-parameter family of theories. By calculating Poisson brackets we show explicitly that the constraints of the theory constitute a first-class set. Therefore the resulting theory is well defined with regard to time evolution. The structure of the Hamiltonian theory rules out the existence of the Newtonian limit.Comment: 17 pages, Latex file, no figures; a numerical coefficient has been corrected and a different result is achieve

    Black Holes in 2+1 Teleparallel Theories of Gravity

    Get PDF
    We apply the Hamiltonian formulation of teleparallel theories of gravity in 2+1 dimensions to a circularly symmetric geometry. We find a family of one-parameter black hole solutions. The BTZ solution fixes the unique free parameter of the theory. The resulting field equations coincide with the teleparallel equivalent of Einstein's three-dimensional equations. We calculate the gravitational energy of the black holes by means of the simple expression that arises in the Hamiltonian formulation and conclude that the resulting value is identical to that calculated by means of the Brown-York method.Comment: 20 pages, Latex file, no figure
    • …
    corecore