53 research outputs found

    Spike-Timing-Based Computation in Sound Localization

    Get PDF
    Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination) in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal

    The Role of Haptic Cues in Musical Instrument Quality Perception

    Get PDF
    We draw from recent research in violin quality evaluation and piano performance to examine whether the vibrotactile sensation felt when playing a musical instrument can have a perceptual effect on its judged quality from the perspective of the musician. Because of their respective sound production mechanisms, the violin and the piano offer unique example cases and diverse scenarios to study tactile aspects of musical interaction. Both violinists and pianists experience rich haptic feedback, but the former experience vibrations at more bodily parts than the latter. We observe that the vibrotactile component of the haptic feedback during playing, both for the violin and the piano, provides an important part of the integrated sensory information that the musician experiences when interacting with the instrument. In particular, the most recent studies illustrate that vibrations felt at the fingertips (left hand only for the violinist) can lead to an increase in perceived sound loudness and richness, suggesting the potential for more research in this direction

    Enhanced MAE for Complex Motions

    Full text link
    • …
    corecore