23 research outputs found
Biological spectra analysis: Linking biological activity profiles to molecular structure
Establishing quantitative relationships between molecular structure and broad biological effects has been a longstanding challenge in science. Currently, no method exists for forecasting broad biological activity profiles of medicinal agents even within narrow boundaries of structurally similar molecules. Starting from the premise that biological activity results from the capacity of small organic molecules to modulate the activity of the proteome, we set out to investigate whether descriptor sets could be developed for measuring and quantifying this molecular property. Using a 1,567-compound database, we show that percent inhibition values, determined at single high drug concentration in a battery of in vitro assays representing a cross section of the proteome, provide precise molecular property descriptors that identify the structure of molecules. When broad biological activity of molecules is represented in spectra form, organic molecules can be sorted by quantifying differences between biological spectra. Unlike traditional structure–activity relationship methods, sorting of molecules by using biospectra comparisons does not require knowledge of a molecule's putative drug targets. To illustrate this finding, we selected as starting point the biological activity spectra of clotrimazole and tioconazole because their putative target, lanosterol demethylase (CYP51), was not included in the bioassay array. Spectra similarity obtained through profile similarity measurements and hierarchical clustering provided an unbiased means for establishing quantitative relationships between chemical structures and biological activity spectra. This methodology, which we have termed biological spectra analysis, provides the capability not only of sorting molecules on the basis of biospectra similarity but also of predicting simultaneous interactions of new molecules with multiple proteins
Systems chemical biology.
The increasing availability of data related to genes, proteins and their modulation by small molecules, paralleled by the emergence of simulation tools in systems biology, has provided a vast amount of biological information. However, there is a critical need to develop cheminformatics tools that can integrate chemical knowledge with these biological databases, with the goal of creating systems chemical biology
Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification
Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines