135 research outputs found
Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer
BACKGROUND: The enzyme porphobilinogen synthase (PBGS), which is central to the biosynthesis of heme, chlorophyll and cobalamins, has long been known to use a variety of metal ions and has recently been shown able to exist in two very different quaternary forms that are related to metal ion usage. This paper reports new information on the metal ion independence and quaternary structure of PBGS from the photosynthetic bacterium Rhodobacter capsulatus. RESULTS: The gene for R. capsulatus PBGS was amplified from genomic DNA and sequencing revealed errors in the sequence database. R. capsulatus PBGS was heterologously expressed in E. coli and purified to homogeneity. Analysis of an unusual phylogenetic variation in metal ion usage by PBGS enzymes predicts that R. capsulatus PBGS does not utilize metal ions such as Zn(2+), or Mg(2+), which have been shown to act in other PBGS at either catalytic or allosteric sites. Studies with these ions and chelators confirm the predictions. A broad pH optimum was determined to be independent of monovalent cations, approximately 8.5, and the K(m )value shows an acidic pK(a )of ~6. Because the metal ions of other PBGS affect the quaternary structure, gel permeation chromatography and analytical ultracentrifugation experiments were performed to examine the quaternary structure of metal ion independent R. capsulatus PBGS. The enzyme was found to be predominantly hexameric, in contrast with most other PBGS, which are octameric. A protein concentration dependence to the specific activity suggests that the hexameric R. capsulatus PBGS is very active and can dissociate to smaller, less active, species. A homology model of hexameric R. capsulatus PBGS is presented and discussed. CONCLUSION: The evidence presented in this paper supports the unusual position of the R. capsulatus PBGS as not requiring any metal ions for function. Unlike other wild-type PBGS, the R. capsulatus protein is a hexamer with an unusually high specific activity when compared to other octameric PBGS proteins
First Results from the TOTEM Experiment
The first physics results from the TOTEM experiment are here reported,
concerning the measurements of the total, differential elastic, elastic and
inelastic pp cross-section at the LHC energy of = 7 TeV, obtained
using the luminosity measurement from CMS. A preliminary measurement of the
forward charged particle distribution is also shown.Comment: Conference Proceeding. MPI@LHC 2010: 2nd International Workshop on
Multiple Partonic Interactions at the LHC. Glasgow (UK), 29th of November to
the 3rd of December 201
Diffraction at TOTEM
The TOTEM experiment at the LHC measures the total proton-proton cross
section with the luminosity-independent method and the elastic proton-proton
cross-section over a wide |t|-range. It also performs a comprehensive study of
diffraction, spanning from cross-section measurements of individual diffractive
processes to the analysis of their event topologies. Hard diffraction will be
studied in collaboration with CMS taking advantage of the large common rapidity
coverage for charged and neutral particle detection and the large variety of
trigger possibilities even at large luminosities. TOTEM will take data under
all LHC beam conditions including standard high luminosity runs to maximize its
physics reach. This contribution describes the main features of the TOTEM
physics programme including measurements to be made in the early LHC runs. In
addition, a novel scheme to extend the diffractive proton acceptance for high
luminosity runs by installing proton detectors at IP3 is described.Comment: 10 pages, 9 figures, contribution to the proceedings of the HERA and
the LHC workshop 2007-0
Elastic differential cross-section d sigma/dt at root s=2.76 TeV and implications on the existence of a colourless C-odd three-gluon compound state
The proton-proton elastic differential cross sectvion d sigma/dt has been measured by the TOTEM experiment at root s = 2.76 TeV energy with beta* = 11 m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed tomeasure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer (vertical bar t vertical bar) from 0.36 to 0.74 GeV2. The differential cross-section can be described with an exponential in the vertical bar t vertical bar-range between 0.36 and 0.54 GeV2, followed by a diffractive minimum (dip) at vertical bar t(dip)vertical bar = (0.61 +/- 0.03) GeV2 and a subsequent maximum (bump). The ratio of the ds/dt at the bump and at the dip is 1.7 +/- 0.2. When compared to proton-antiproton measurement of the D0 experiment at root s = 1.96 TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for the exchange of a colourless C-odd three-gluon compound state in the t-channel of the proton-proton and proton-antiproton elastic scattering.Peer reviewe
Measurement of single-diffractive dijet production in proton-proton collisions at root s=8 TeV with the CMS and TOTEM experiments
A Publisher's Erratum to this article was published on 03 May 2021. https://doi.org/10.1140/epjc/s10052-021-08863-wPeer reviewe
Search for strongly interacting massive particles generating trackless jets in protonâproton collisions at sâ = 13 TeV
Data Availability Statement: This manuscript has no associated data or the data will not be deposited. [Authorsâ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in âCMS data preservation, re-use and open access policyâ (https://cms-docdb.cern.ch/cgi-bin/ PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1. 2.pdf&version=2).]Copyright © 2022 The Authors. A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using protonâproton collision data corresponding to an integrated luminosity of 16.1fbâ1, collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100GeV are excluded and further sensitivity is explored towards higher masses.SCOAP3
Mechanistic modeling predicts anti-carcinogenic radiation effects on intercellular signaling in vitro turn pro-carcinogenic in vivo.
Oncogenic transformed cells represent an in vitro system mimicking early-stage carcinogenesis. These precancerous cells are subject to a selective removal via apoptosis induced by neighbor cells. By modulating the underpinning intercellular signaling mediated by cytokines and reactive oxygen/nitrogen species, ionizing radiation enhances this removal of precancerous cells in vitro, at doses from a few mGy to a few Gy. However, epidemiological data demonstrate that radiation exposure induces cancer, at least above 100 mGy. Mechanistic modeling of the given anti-carcinogenic process explains this discrepancy: The model reproduces in vitro data on apoptosis and its enhancement by radiation. For in vivo-like conditions with signal lifetimes shorter and cell densities higher than in vitro, radiation is predicted to reduce this anti-carcinogenic mechanism. Early-stage lesions that would be turned dormant or completely removed may grow large and escape this control mechanism upon irradiation
- âŠ