557 research outputs found
Reply to the Comment of Muessel and Rieger on ``Aging Effects in a Lennard-Jones Glass''
This is a Reply to the Comment of Muessel and Rieger cond-mat/9804063 to out
paper on ``Aging Effects in a Lennerd-Jones Glass''. We show that the scaling
function proposed by Muessel and Rieger does not lead to a satisfactory scaling
of our aging data.Comment: 1 page of Revtex, 1 eps figur
How does the relaxation of a supercooled liquid depend on its microscopic dynamics?
Using molecular dynamics computer simulations we investigate how the
relaxation dynamics of a simple supercooled liquid with Newtonian dynamics
differs from the one with a stochastic dynamics. We find that, apart from the
early beta-relaxation regime, the two dynamics give rise to the same relaxation
behavior. The increase of the relaxation times of the system upon cooling, the
details of the alpha-relaxation, as well as the wave vector dependence of the
Edwards-Anderson-parameters are independent of the microscopic dynamics.Comment: 6 pages of Latex, 4 figure
A quantitative test of the mode-coupling theory of the ideal glass transition for a binary Lennard-Jones system
Using a molecular dynamics computer simulation we determine the temperature
dependence of the partial structure factors for a binary Lennard-Jones system.
These structure factors are used as input data to solve numerically the
wave-vector dependent mode-coupling equations in the long time limit. Using the
so determined solutions, we compare the predictions of mode-coupling theory
(MCT) with the results of a previously done molecular dynamics computer
simulation [Phys. Rev. E 51, 4626 (1995), ibid. 52, 4134 (1995)]. From this
comparison we conclude that MCT gives a fair estimate of the critical coupling
constant, a good estimate of the exponent parameter, predicts the wave-vector
dependence of the various nonergodicity parameters very well, except for very
large wave-vectors, and gives also a very good description of the space
dependence of the various critical amplitudes. In an attempt to correct for
some of the remaining discrepancies between the theory and the results of the
simulation, we investigate two small (ad hoc) modifications of the theory. We
find that one modification gives a worse agreement between theory and
simulation, whereas the second one leads to an improved agreement.Comment: Figures available from W. Ko
Scaling behavior in the dynamics of a supercooled Lennard-Jones mixture
We present the results of a large scale molecular dynamics computer
simulation of a binary, supercooled Lennard-Jones fluid. At low temperatures
and intermediate times the time dependence of the intermediate scattering
function is well described by a von Schweidler law. The von Schweidler exponent
is independent of temperature and depends only weakly on the type of
correlator. For long times the correlation functions show a Kohlrausch behavior
with an exponent that is independent of temperature. This dynamical
behavior is in accordance with the mode-coupling theory of supercooled liquids.Comment: 6 pages, RevTex, three postscript figures available on request,
MZ-Physics-10
Fluctuation-dissipation relation in a sheared fluid
In a fluid out of equilibrium, the fluctuation dissipation theorem (FDT) is
usually violated. Using molecular dynamics simulations, we study in detail the
relationship between correlation and response functions in a fluid driven into
a stationary non-equilibrium state. Both the high temperature fluid state and
the low temperature glassy state are investigated. In the glassy state, the
violation of the FDT is quantitatively identical to the one observed previously
in an aging system in the absence of external drive. In the fluid state,
violations of the FDT appear only when the fluid is driven beyond the linear
response regime, and are then similar to those observed in the glassy state.
These results are consistent with the picture obtained earlier from theoretical
studies of driven mean-field disordered models, confirming the similarity
between these models and real glasses.Comment: 4 pages, latex, 3 ps figure
Shearing a Glassy Material: Numerical Tests of Nonequilibrium Mode-Coupling Approaches and Experimental Proposals
The predictions of a nonequilibrium schematic mode-coupling theory developed
to describe the nonlinear rheology of soft glassy materials have been
numerically challenged in a sheared binary Lennard-Jones mixture. The theory
gives an excellent description of the stress/temperature `jamming phase
diagram' of the system. In the present paper, we focus on the issue of an
effective temperature Teff for the slow modes of the fluid, as defined from a
generalized fluctuation-dissipation theorem. As predicted theoretically, many
different observables are found to lead to the same value of Teff, suggesting
several experimental procedures to measure Teff. New, simple experimental
protocols to access Teff from a generalized equipartition theorem are also
proposed, and one such experiment is numerically performed. These results give
strong support to the thermodynamic interpretation of Teff and make it
experimentally accessible in a very direct way.Comment: Version accepted for publication - Physical Review Letter
Relaxation in a glassy binary mixture: Comparison of the mode-coupling theory to a Brownian dynamics simulation
We solved the mode-coupling equations for the Kob-Andersen binary mixture
using the structure factors calculated from Brownian dynamics simulations of
the same system. We found, as was previously observed, that the mode-coupling
temperature, Tc, inferred from simulations is about two times greater than that
predicted by the theory. However, we find that many time dependent quantities
agree reasonably well with the predictions of the mode-coupling theory if they
are compared at the same reduced temperature epsilon = (T-Tc)/Tc, and if
epsilon is not too small. Specifically, the simulation results for the
incoherent intermediate scattering function, the mean square displacement, the
relaxation time and the self-diffusion coefficient agree reasonably well with
the predictions of the mode-coupling theory. We find that there are substantial
differences for the non-Gaussian parameter. At small reduced temperatures the
probabilities of the logarithm of single particle displacements demonstrate
that there is hopping-like motion present in the simulations, and this motion
is not predicted by the mode-coupling theory. The wave vector dependent
relaxation time is shown to be qualitatively different than the predictions of
the mode-coupling theory for temperatures where hopping-like motion is present.Comment: To be published in Physical Review
- …