4,024 research outputs found
Radiation from a charged particle-in-flight from a laminated medium to vacuum
The radiation from a charged particle-in-flight from a semi-infinite
laminated medium to vacuum and back,- from vacuum to the laminated medium, has
been investigated. Expressions for the spectral-angular distribution of
radiation energy in vacuum (at large distances from the boundary of laminated
medium) were obtained for both the cases with no limitations on the amplitude
and variation profile of the laminated medium permittivity. The results of
appropriate numerical calculations are presented and possible applications of
the obtained results are discussed.Comment: 8 pages, 6 figures, contribution to Proceedings of International
Symposium RREPS-2009, 07-11 September, 2009, Zvenigorod, Russi
Addendum to: Search for anomalous top-gluon couplings at LHC revisited
In our latest paper "Search for anomalous top-gluon couplings at LHC
revisited" in Eur. Phys. J. C65 (2010), 127-135 (arXiv:0910.3049 [hep-ph]), we
studied possible effects of nonstandard top-gluon couplings through the
chromoelectric and chromomagnetic moments of the top quark using the total
cross section of ppbar/pp --> ttbar X at Tevatron/LHC. There we pointed out
that LHC data could give a stronger constraint on those two parameters, which
would be hard to obtain from Tevatron data alone. We show here the first CMS
measurement of this cross section actually makes it possible.Comment: 5 pages, 1 figure, LaTeX2e, Final version (to appear in Eur. Phys. C
Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at s√=8 TeV
A search is performed for long-lived particles that decay into final states that include a pair of electrons or a pair of muons. The experimental signature is a distinctive topology consisting of a pair of charged leptons originating from a displaced secondary vertex. Events corresponding to an integrated luminosity of 19.6 (20.5) fb−1 in the electron (muon) channel were collected with the CMS detector at the CERN LHC in proton-proton collisions at s√=8 TeV. No significant excess is observed above standard model expectations. Upper limits on the product of the cross section and branching fraction of such a signal are presented as a function of the long-lived particle’s mean proper decay length. The limits are presented in an approximately model-independent way, allowing them to be applied to a wide class of models yielding the above topology. Over much of the investigated parameter space, the limits obtained are the most stringent to date. In the specific case of a model in which a Higgs boson in the mass range 125–1000 GeV/c2 decays into a pair of long-lived neutral bosons in the mass range 20–350 GeV/c2, each of which can then decay to dileptons, the upper limits obtained are typically in the range 0.2–10 fb for mean proper decay lengths of the long-lived particles in the range 0.01–100 cm. In the case of the lowest Higgs mass considered (125 GeV/c2), the limits are in the range 2–50 fb. These limits are sensitive to Higgs boson branching fractions as low as 10−4
On the possibility of q-scaling in high energy production processes
It has been noticed recently that transverse momenta (p_T) distributions
observed in high energy production processes exhibit remarkably universal
scaling behaviour. This is the case when a suitable variable replaces the usual
p_T. On the other hand, it is also widely known that transverse momentum
distributions in general follow a power-like Tsallis distribution, rather than
an exponential Boltzmann-Gibbs, with a (generally energy dependent)
nonextensivity parameter q. Here we show that it is possible to choose a
suitable variable such that all the data can be fitted by the same Tsallis
distribution (with the same, energy independent value of the q-parameter). Thus
they exhibit q-scaling.Comment: Final version, accepted by J.Phys.
Extraction of Beam-Spin Asymmetries from the Hard Exclusive π⁺ Channel Off Protons in a Wide Range of Kinematics
We have measured beam-spin asymmetries to extract the sinϕ moment ALUsinϕ from the hard exclusive e→p → e\u27nπ+ reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The ALUsinϕ moment has been measured up to 6.6 GeV2 in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time. The experimental results in very forward kinematics demonstrate the sensitivity to chiral-odd and chiral-even GPDs. In very backward kinematics where the TDA framework is applicable, we found ALUsinϕ to be negative, while a sign change was observed near 90° in the center of mass. The unique results presented in this Letter will provide critical constraints to establish reaction mechanisms that can help to further develop the GPD and TDA frameworks
Some Open Points in Nonextensive Statistical Mechanics
We present and discuss a list of some interesting points that are currently
open in nonextensive statistical mechanics. Their analytical, numerical,
experimental or observational advancement would naturally be very welcome.Comment: 30 pages including 6 figures. Invited paper to appear in the
International Journal of Bifurcation and Chao
Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies
We consider new physics explanations of the anomaly in the top quark
forward-backward asymmetry measured at the Tevatron, in the context of flavor
conserving models. The recently measured LHC dijet distributions strongly
constrain many otherwise viable models. A new scalar particle in the
antitriplet representation of flavor and color can fit the t tbar asymmetry and
cross section data at the Tevatron and avoid both low- and high-energy bounds
from flavor physics and the LHC. An s-channel resonance in uc to uc scattering
at the LHC is predicted to be not far from the current sensitivity. This model
also predicts rich top quark physics for the early LHC from decays of the new
scalar particles. Single production gives t tbar j signatures with high
transverse momentum jet, pair production leads to t tbar j j and 4 jet final
states.Comment: 7 pages, 6 figures; v2: notation clarified, references adde
Theoretical predictions for charm and bottom production at the LHC
We present predictions for a variety of single-inclusive observables that
stem from the production of charm and bottom quark pairs at the 7 TeV LHC. They
are obtained within the FONLL semi-analytical framework, and with two "Monte
Carlo + NLO" approaches, MC@NLO and POWHEG. Results are given for final states
and acceptance cuts that are as close as possible to those used by experimental
collaborations and, where feasible, are compared to LHC data.Comment: 22 pages, 10 figure
Measurements of the γv p → p\u27π+π− Cross Section with the CLAS Detector for 0.4 GeV\u3csup\u3e2\u3c/sup\u3e \u3c Q\u3csup\u3e2\u3c/sup\u3e \u3c 1.0 GeV\u3csup\u3e2\u3c/sup\u3e and 1.3 GeV \u3c W \u3c 1.825 GeV
New results on the single-differential and fully integrated cross sections for the process γvp → p\u27π+π− are presented. The experimental data were collected with the CLAS detector at Jefferson Laboratory. Measurements were carried out in the kinematic region of the reaction invariant mass W from 1.3 to 1.825 GeV and the photon virtuality Q2 from 0.4 to 1.0 GeV2. The cross sections were obtained in narrow Q2 bins (0.05 GeV2) with the smallest statistical uncertainties achieved in double-pion electroproduction experiments to date. The results were found to be in agreement with previously available data where they overlap. A preliminary interpretation of the extracted cross sections, which was based on a phenomenological meson-baryon reaction model, revealed substantial relative contributions from nucleon resonances. The data offer promising prospects to improve knowledge on the Q2 evolution of the electrocouplings of most resonances with masses up to ∼1.8 GeV
- …