1,570 research outputs found
Consistency and Accuracy of CelebA Attribute Values
We report the first systematic analysis of the experimental foundations of facial attribute classification.Two annotators independently assigning attribute values shows that only 12 of 40 common attributes are assigned values with >= 95% consistency, and three (high cheekbones, pointed nose, oval face) have essentially random consistency. Of 5,068 duplicate face appearances in CelebA, attributes have contradicting values on from 10 to 860 of the 5,068 duplicates. Manual audit of a subset of CelebA estimates error rates as high as 40% for (no beard=false), even though the labeling consistency experiment indicates that no beard could be assigned with >= 95% consistency. Selecting the mouth slightly open (MSO) for deeper analysis, we estimate the error rate for (MSO=true) at about 20% and (MSO=false) at about 2%. A corrected version of the MSO attribute values enables learning a model that achieves higher accuracy than previously reported for MSO. Corrected values for CelebA MSO are available at https:// github.com/ HaiyuWu/ CelebAMSO
Recommended from our members
Oxidative instability of ionomers in hydroxide-exchange-membrane water electrolyzers
Hydroxide-exchange membrane (HEM) electrolyzers can produce green H2 with only earth-abundant catalysts and electrolyte-free (nominally pure) water feed, significantly decreasing system cost and complexity. However, HEM technology suffers from short lifetimes, attributed in part to poor stability of anion-exchange polymers used in the membrane and catalyst layers. We use electrochemical analysis and ex situ characterization techniques to study anion-exchange-polymer degradation in electrolyzers. Using multiple ionomers, catalyst-layer additives, and electrolyte feed, we show how anode-ionomer oxidation is the dominant degradation mechanism for all HEM-based electrolyzer cells tested. We find improved device stability using oxidation-resistant catalyst-layer binders and propose new design strategies for advanced ionomer and catalyst-layer development
Misconceptions on COVID-19 Risk Among Ugandan Men: Results From a Rapid Exploratory Survey, April 2020
© Copyright © 2020 Kasozi, MacLeod, Ssempijja, Mahero, Matama, Musoke, Bardosh, Ssebuufu, Wakoko-Studstil, Echoru, Ayikobua, Mujinya, Nambuya, Onohuean, Zirintunda, Ekou and Welburn. Background: Transmission of COVID-19 in developing countries is expected to surpass that in developed countries; however, information on community perceptions of this new disease is scarce. The aim of the study was to identify possible misconceptions among males and females toward COVID-19 in Uganda using a rapid online survey distributed via social media. Methods: A cross-sectional survey carried out in early April 2020 was conducted with 161 Ugandans, who purposively participated in the online questionnaire that assessed understandings of COVID-19 risk and infection. Sixty-four percent of respondents were male and 36% were female. Results: We found significant divergences of opinion on gendered susceptibility to COVID-19. Most female respondents considered infection risk, symptoms, severe signs, and death to be equally distributed between genders. In contrast, male respondents believed they were more at risk of infection, severe symptoms, severe signs, and death (52.7 vs. 30.6%, RR = 1.79, 95% CI: 1.14–2.8). Most women did not share this perception and disagreed that males were at higher risk of infection (by a factor of three), symptoms (79% disagree), severe signs (71%, disagree), and death (70.2% disagree). Overall, most respondents considered children less vulnerable (OR = 1.12, 95% CI: 0.55–2.2) to COVID-19 than adults, that children present with less symptoms (OR = 1.57, 95% CI: 0.77–3.19), and that there would be less mortality in children (OR = 0.92, 95% CI: 0.41–1.88). Of female respondents, 76.4% considered mortality from COVID-19 to be different between the young and the elderly (RR = 1.7, 95% CI: 1.01–2.92) and 92.7% believed young adults would show fewer signs than the elderly, and 71.4% agreed that elderly COVID-19 patients would show more severe signs than the young (OR = 2.2, 95% CI: 1.4, 4.8). While respondents considered that all races were susceptible to the signs and symptoms of infection as well as death from COVID-19, they considered mortality would be highest among white people from Europe and the USA. Some respondents (mostly male 33/102, 32.4%) considered COVID-19 to be a “disease of whites” (30.2%). Conclusion: The WHO has identified women and children in rural communities as vulnerable persons who should be given more attention in the COVID-19 national response programs across Africa; however, our study has found that men in Uganda perceive themselves to be at greater risk and that these contradictory perceptions (including the association of COVID-19 with “the white” race) suggest an important discrepancy in the communication of who is most vulnerable and why. Further research is urgently needed to validate and expand the results of this small exploratory study
Exercise and Omega-3 Polyunsaturated Fatty Acid Supplementation for the Treatment of Hepatic Steatosis in Hyperphagic OLETF Rats
Background and Aims. This study examined if exercise and omega-3 fatty acid (n3PUFA) supplementation is an effective treatment for hepatic steatosis in obese, hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Methods. Male OLETF rats were divided into 4 groups (n=8/group): (1) remained sedentary (SED), (2) access to running wheels; (EX) (3) a diet supplemented with 3% of energy from fish oil (n3PUFA-SED); and (4) n3PUFA supplementation plus EX (n3PUFA+EX). The 8 week treatments began at 13 weeks, when hepatic steatosis is present in OLETF-SED rats. Results. EX alone lowered hepatic triglyceride (TAG) while, in contrast, n3PUFAs failed to lower hepatic TAG and blunted the ability of EX to decrease hepatic TAG levels in n3PUFAs+EX. Insulin sensitivity was improved in EX animals, to a lesser extent in n3PUFA+EX rats, and did not differ between n3PUFA-SED and SED rats. Only the EX group displayed higher complete hepatic fatty acid oxidation (FAO) to CO2 and carnitine palmitoyl transferase-1 activity. EX also lowered hepatic fatty acid synthase protein while both EX and n3PUFA+EX decreased stearoyl CoA desaturase-1 protein. Conclusions. Exercise lowers hepatic steatosis through increased complete hepatic FAO, insulin sensitivity, and reduced expression of de novo fatty acid synthesis proteins while n3PUFAs had no effect
Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA)
Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled “Advancing AOPs for Integrated Toxicology and Regulatory Applications” with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes.publishedVersio
Cervical HIV-1 RNA shedding after cryotherapy among HIV-positive women with cervical intraepithelial neoplasia stage 2 or 3
Objective: To determine the effect of cryotherapy on HIV-1 cervical shedding.
Design: Prospective cohort study.
Methods: Five hundred HIV-positive women enrolled at an HIV treatment clinic in Nairobi, Kenya were screened for cervical cancer. Women diagnosed with cervical intraepithelial neoplasia stage 2 or 3 (CIN 2/3) by histology were offered cryotherapy treatment. The first 50 women had cervical swabs taken at baseline and at 2 and 4 weeks following treatment. Swabs were analyzed for HIV-1 RNA and compared using General Estimating Equation (GEE) with binomial or Gaussian links.
Results: Of the 50 women enrolled, 40 were receiving antiretroviral therapy (ART) and 10 were not receiving ART at the time of cryotherapy and during study follow-up. Among all women, the odds of detectable cervical HIV-1 RNA did not increase at 2 weeks [odds ratio (OR) 1.18; 95% confidence interval (CI) 0.65-2.13] or 4 weeks (OR 1.29; 95% CI 0.71-2.33) following cryotherapy. Among 10 women not receiving ART, the OR of detectable shedding at 2 weeks was higher, but not statistically significant (OR 4.02; 95% CI 0.53-30.79; P = 0.2), and at 4 weeks remained unchanged (OR 1.00; 95% CI 0.27-3.74).
Conclusion: There was no increase in detectable cervical HIV-1 RNA among HIV-positive women after cryotherapy. The risk of HIV-1 transmission after cryotherapy may not be significant, particularly among women already on ART at the time of cervical treatment. However, further investigation is needed among women not receiving ART
Detection of enteric viral and bacterial pathogens associated with paediatric diarrhoea in Goroka, Papua New Guinea
Objectives: The aim of this study was to investigate the viral and bacterial causes of acute watery diarrhoea in hospitalized children in Papua New Guinea.
Methods: A retrospective analysis was conducted on stool samples collected from 199 children (age < 5 years) admitted to the paediatric ward of Goroka General Hospital from August 2009 through November 2010. A large range of viral and bacterial enteric pathogens were targeted using real-time PCR/RT-PCR assays.
Results: Young children were much more likely to be admitted with acute gastroenteritis, with 62.8% of patients aged <1 year and 88.4% aged <2 years. An enteric pathogen was detected in 69.8% (n = 138) of patients. The most commonly detected pathogens were Shigella spp (26.6%), rotavirus (25.6%), adenovirus types 40/41 (11.6%), enterotoxigenic Escherichia coli (11.1%), enteropathogenic E. coli (8.5%), norovirus G2 (6.0%), and Campylobacter spp (4.0%). Norovirus G1, sapovirus, and Salmonella spp were also detected, but below our statistical limit of detection. Vibrio cholerae and astrovirus were not detected in any patients. Mixed infections were detected in 22.1% of patients, with Shigella and rotavirus most commonly detected in co-infections with other pathogens.
Conclusions: This study demonstrates that Shigella and rotavirus are the major pathogens associated with acute paediatric gastroenteritis in this setting
Recommended from our members
Anode Catalysts in Anion‐Exchange‐Membrane Electrolysis without Supporting Electrolyte: Conductivity, Dynamics, and Ionomer Degradation
Anion-exchange-membrane water electrolyzers (AEMWEs) in principle operate without soluble electrolyte using earth-abundant catalysts and cell materials and thus lower the cost of green H2 . Current systems lack competitive performance and the durability needed for commercialization. One critical issue is a poor understanding of catalyst-specific degradation processes in the electrolyzer. While non-platinum-group-metal (non-PGM) oxygen-evolution catalysts show excellent performance and durability in strongly alkaline electrolyte, this has not transferred directly to pure-water AEMWEs. Here, AEMWEs with five non-PGM anode catalysts are built and the catalysts' structural stability and interactions with the alkaline ionomer are characterized during electrolyzer operation and post-mortem. The results show catalyst electrical conductivity is one key to obtaining high-performing systems and that many non-PGM catalysts restructure during operation. Dynamic Fe sites correlate with enhanced degradation rates, as does the addition of soluble Fe impurities. In contrast, electronically conductive Co3 O4 nanoparticles (without Fe in the crystal structure) yield AEMWEs from simple, standard preparation methods, with performance and stability comparable to IrO2 . These results reveal the fundamental dynamic catalytic processes resulting in AEMWE device failure under relevant conditions, demonstrate a viable non-PGM catalyst for AEMWE operation, and illustrate underlying design rules for engineering anode catalyst/ionomer layers with higher performance and durability
The potential impact of climate change on Australia's soil organic carbon resources
BACKGROUND: Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem and that released into the atmosphere. We have linked net primary production (NPP) algorithms, which include the impact of enhanced atmospheric CO(2 )on plant growth, to the SOCRATES terrestrial carbon model to estimate changes in SOC for the Australia continent between the years 1990 and 2100 in response to climate changes generated by the CSIRO Mark 2 Global Circulation Model (GCM). RESULTS: We estimate organic carbon storage in the topsoil (0–10 cm) of the Australian continent in 1990 to be 8.1 Gt. This equates to 19 and 34 Gt in the top 30 and 100 cm of soil, respectively. By the year 2100, under a low emissions scenario, topsoil organic carbon stores of the continent will have increased by 0.6% (49 Mt C). Under a high emissions scenario, the Australian continent becomes a source of CO(2 )with a net reduction of 6.4% (518 Mt) in topsoil carbon, when compared to no climate change. This is partially offset by the predicted increase in NPP of 20.3% CONCLUSION: Climate change impacts must be studied holistically, requiring integration of climate, plant, ecosystem and soil sciences. The SOCRATES terrestrial carbon cycling model provides realistic estimates of changes in SOC storage in response to climate change over the next century, and confirms the need for greater consideration of soils in assessing the full impact of climate change and the development of quantifiable mitigation strategies
- …